1 |
|
2 |
/*=========================================== |
3 |
|
4 |
The following 14 functions calculate the following spaceweather indices: |
5 |
|
6 |
USFLUX Total unsigned flux in Maxwells |
7 |
MEANGAM Mean inclination angle, gamma, in degrees |
8 |
MEANGBT Mean value of the total field gradient, in Gauss/Mm |
9 |
MEANGBZ Mean value of the vertical field gradient, in Gauss/Mm |
10 |
MEANGBH Mean value of the horizontal field gradient, in Gauss/Mm |
11 |
MEANJZD Mean vertical current density, in mA/m2 |
12 |
TOTUSJZ Total unsigned vertical current, in Amperes |
13 |
MEANALP Mean twist parameter, alpha, in 1/Mm |
14 |
MEANJZH Mean current helicity in G2/m |
15 |
TOTUSJH Total unsigned current helicity in G2/m |
16 |
ABSNJZH Absolute value of the net current helicity in G2/m |
17 |
SAVNCPP Sum of the Absolute Value of the Net Currents Per Polarity in Amperes |
18 |
MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter |
19 |
TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter |
20 |
MEANSHR Mean shear angle (measured using Btotal) in degrees |
21 |
R_VALUE Karel Schrijver's R parameter |
22 |
|
23 |
The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and |
24 |
pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD |
25 |
coordinate bitmaps are interpolated for certain data (at the time of this CVS submit, all data |
26 |
prior to 2013.08.21_17:24:00_TAI contain interpolated bitmaps; data post-2013.08.21_17:24:00_TAI |
27 |
contain nearest-neighbor bitmaps). |
28 |
|
29 |
In the CCD coordinates, this means that we are selecting the pixels that equal 90 in conf_disambig |
30 |
and the pixels that equal 33 or 34 in bitmap. Here are the definitions of the pixel values: |
31 |
|
32 |
For conf_disambig: |
33 |
50 : not all solutions agree (weak field method applied) |
34 |
60 : not all solutions agree (weak field + annealed) |
35 |
90 : all solutions agree (strong field + annealed) |
36 |
0 : not disambiguated |
37 |
|
38 |
For bitmap: |
39 |
1 : weak field outside smooth bounding curve |
40 |
2 : strong field outside smooth bounding curve |
41 |
33 : weak field inside smooth bounding curve |
42 |
34 : strong field inside smooth bounding curve |
43 |
|
44 |
Written by Monica Bobra 15 August 2012 |
45 |
Potential Field code (appended) written by Keiji Hayashi |
46 |
Error analysis modification 21 October 2013 |
47 |
|
48 |
===========================================*/ |
49 |
#include <math.h> |
50 |
#include <mkl.h> |
51 |
|
52 |
#define PI (M_PI) |
53 |
#define MUNAUGHT (0.0000012566370614) /* magnetic constant */ |
54 |
|
55 |
/*===========================================*/ |
56 |
|
57 |
/* Example function 1: Compute total unsigned flux in units of G/cm^2 */ |
58 |
|
59 |
// To compute the unsigned flux, we simply calculate |
60 |
// flux = surface integral [(vector Bz) dot (normal vector)], |
61 |
// = surface integral [(magnitude Bz)*(magnitude normal)*(cos theta)]. |
62 |
// However, since the field is radial, we will assume cos theta = 1. |
63 |
// Therefore the pixels only need to be corrected for the projection. |
64 |
|
65 |
// To convert G to G*cm^2, simply multiply by the number of square centimeters per pixel. |
66 |
// As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). |
67 |
// (Gauss/pix^2)(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.cm/m)^2 |
68 |
// =Gauss*cm^2 |
69 |
|
70 |
int computeAbsFlux(float *bz_err, float *bz, int *dims, float *absFlux, |
71 |
float *mean_vf_ptr, float *mean_vf_err_ptr, float *count_mask_ptr, int *mask, |
72 |
int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
73 |
|
74 |
{ |
75 |
|
76 |
int nx = dims[0]; |
77 |
int ny = dims[1]; |
78 |
int i = 0; |
79 |
int j = 0; |
80 |
int count_mask = 0; |
81 |
double sum = 0.0; |
82 |
double err = 0.0; |
83 |
*absFlux = 0.0; |
84 |
*mean_vf_ptr = 0.0; |
85 |
|
86 |
|
87 |
if (nx <= 0 || ny <= 0) return 1; |
88 |
|
89 |
for (i = 0; i < nx; i++) |
90 |
{ |
91 |
for (j = 0; j < ny; j++) |
92 |
{ |
93 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
94 |
if isnan(bz[j * nx + i]) continue; |
95 |
sum += (fabs(bz[j * nx + i])); |
96 |
err += bz_err[j * nx + i]*bz_err[j * nx + i]; |
97 |
count_mask++; |
98 |
} |
99 |
} |
100 |
|
101 |
*mean_vf_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
102 |
*mean_vf_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); // error in the unsigned flux |
103 |
*count_mask_ptr = count_mask; |
104 |
return 0; |
105 |
} |
106 |
|
107 |
/*===========================================*/ |
108 |
/* Example function 2: Calculate Bh, the horizontal field, in units of Gauss */ |
109 |
// Native units of Bh are Gauss |
110 |
|
111 |
int computeBh(float *bx_err, float *by_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, |
112 |
float *mean_hf_ptr, int *mask, int *bitmask) |
113 |
|
114 |
{ |
115 |
|
116 |
int nx = dims[0]; |
117 |
int ny = dims[1]; |
118 |
int i = 0; |
119 |
int j = 0; |
120 |
int count_mask = 0; |
121 |
double sum = 0.0; |
122 |
*mean_hf_ptr = 0.0; |
123 |
|
124 |
if (nx <= 0 || ny <= 0) return 1; |
125 |
|
126 |
for (i = 0; i < nx; i++) |
127 |
{ |
128 |
for (j = 0; j < ny; j++) |
129 |
{ |
130 |
if isnan(bx[j * nx + i]) |
131 |
{ |
132 |
bh[j * nx + i] = NAN; |
133 |
bh_err[j * nx + i] = NAN; |
134 |
continue; |
135 |
} |
136 |
if isnan(by[j * nx + i]) |
137 |
{ |
138 |
bh[j * nx + i] = NAN; |
139 |
bh_err[j * nx + i] = NAN; |
140 |
continue; |
141 |
} |
142 |
bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] ); |
143 |
sum += bh[j * nx + i]; |
144 |
bh_err[j * nx + i]=sqrt( bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i])/ bh[j * nx + i]; |
145 |
count_mask++; |
146 |
} |
147 |
} |
148 |
|
149 |
*mean_hf_ptr = sum/(count_mask); // would be divided by nx*ny if shape of count_mask = shape of magnetogram |
150 |
|
151 |
return 0; |
152 |
} |
153 |
|
154 |
/*===========================================*/ |
155 |
/* Example function 3: Calculate Gamma in units of degrees */ |
156 |
// Native units of atan(x) are in radians; to convert from radians to degrees, multiply by (180./PI) |
157 |
// |
158 |
// Error analysis calculations are done in radians (since derivatives are only true in units of radians), |
159 |
// and multiplied by (180./PI) at the end for consistency in units. |
160 |
|
161 |
int computeGamma(float *bz_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, |
162 |
float *mean_gamma_ptr, float *mean_gamma_err_ptr, int *mask, int *bitmask) |
163 |
{ |
164 |
int nx = dims[0]; |
165 |
int ny = dims[1]; |
166 |
int i = 0; |
167 |
int j = 0; |
168 |
int count_mask = 0; |
169 |
double sum = 0.0; |
170 |
double err = 0.0; |
171 |
*mean_gamma_ptr = 0.0; |
172 |
|
173 |
if (nx <= 0 || ny <= 0) return 1; |
174 |
|
175 |
for (i = 0; i < nx; i++) |
176 |
{ |
177 |
for (j = 0; j < ny; j++) |
178 |
{ |
179 |
if (bh[j * nx + i] > 100) |
180 |
{ |
181 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
182 |
if isnan(bz[j * nx + i]) continue; |
183 |
if isnan(bz_err[j * nx + i]) continue; |
184 |
if isnan(bh_err[j * nx + i]) continue; |
185 |
if isnan(bh[j * nx + i]) continue; |
186 |
if (bz[j * nx + i] == 0) continue; |
187 |
sum += fabs(atan(bh[j * nx + i]/fabs(bz[j * nx + i])))*(180./PI); |
188 |
err += (1/(1+((bh[j * nx + i]*bh[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))))*(1/(1+((bh[j * nx + i]*bh[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])))) * |
189 |
( ((bh_err[j * nx + i]*bh_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])) + |
190 |
((bh[j * nx + i]*bh[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]*bz[j * nx + i]*bz[j * nx + i])) ); |
191 |
count_mask++; |
192 |
} |
193 |
} |
194 |
} |
195 |
|
196 |
*mean_gamma_ptr = sum/count_mask; |
197 |
*mean_gamma_err_ptr = (sqrt(err)/(count_mask))*(180./PI); |
198 |
//printf("MEANGAM=%f\n",*mean_gamma_ptr); |
199 |
//printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr); |
200 |
return 0; |
201 |
} |
202 |
|
203 |
/*===========================================*/ |
204 |
/* Example function 4: Calculate B_Total*/ |
205 |
// Native units of B_Total are in gauss |
206 |
|
207 |
int computeB_total(float *bx_err, float *by_err, float *bz_err, float *bt_err, float *bx, float *by, float *bz, float *bt, int *dims, int *mask, int *bitmask) |
208 |
{ |
209 |
|
210 |
int nx = dims[0]; |
211 |
int ny = dims[1]; |
212 |
int i = 0; |
213 |
int j = 0; |
214 |
int count_mask = 0; |
215 |
|
216 |
if (nx <= 0 || ny <= 0) return 1; |
217 |
|
218 |
for (i = 0; i < nx; i++) |
219 |
{ |
220 |
for (j = 0; j < ny; j++) |
221 |
{ |
222 |
if isnan(bx[j * nx + i]) |
223 |
{ |
224 |
bt[j * nx + i] = NAN; |
225 |
bt_err[j * nx + i] = NAN; |
226 |
continue; |
227 |
} |
228 |
if isnan(by[j * nx + i]) |
229 |
{ |
230 |
bt[j * nx + i] = NAN; |
231 |
bt_err[j * nx + i] = NAN; |
232 |
continue; |
233 |
} |
234 |
if isnan(bz[j * nx + i]) |
235 |
{ |
236 |
bt[j * nx + i] = NAN; |
237 |
bt_err[j * nx + i] = NAN; |
238 |
continue; |
239 |
} |
240 |
bt[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]); |
241 |
bt_err[j * nx + i]=sqrt(bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i] ) / bt[j * nx + i]; |
242 |
} |
243 |
} |
244 |
return 0; |
245 |
} |
246 |
|
247 |
/*===========================================*/ |
248 |
/* Example function 5: Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */ |
249 |
|
250 |
int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr, float *err_termAt, float *err_termBt) |
251 |
{ |
252 |
|
253 |
int nx = dims[0]; |
254 |
int ny = dims[1]; |
255 |
int i = 0; |
256 |
int j = 0; |
257 |
int count_mask = 0; |
258 |
double sum = 0.0; |
259 |
double err = 0.0; |
260 |
*mean_derivative_btotal_ptr = 0.0; |
261 |
|
262 |
if (nx <= 0 || ny <= 0) return 1; |
263 |
|
264 |
/* brute force method of calculating the derivative (no consideration for edges) */ |
265 |
for (i = 1; i <= nx-2; i++) |
266 |
{ |
267 |
for (j = 0; j <= ny-1; j++) |
268 |
{ |
269 |
derx_bt[j * nx + i] = (bt[j * nx + i+1] - bt[j * nx + i-1])*0.5; |
270 |
err_termAt[j * nx + i] = (((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) ; |
271 |
} |
272 |
} |
273 |
|
274 |
/* brute force method of calculating the derivative (no consideration for edges) */ |
275 |
for (i = 0; i <= nx-1; i++) |
276 |
{ |
277 |
for (j = 1; j <= ny-2; j++) |
278 |
{ |
279 |
dery_bt[j * nx + i] = (bt[(j+1) * nx + i] - bt[(j-1) * nx + i])*0.5; |
280 |
err_termBt[j * nx + i] = (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) ; |
281 |
} |
282 |
} |
283 |
|
284 |
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
285 |
ignore the edges for the error terms as those arrays have been initialized to zero. |
286 |
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
287 |
i=0; |
288 |
for (j = 0; j <= ny-1; j++) |
289 |
{ |
290 |
derx_bt[j * nx + i] = ( (-3*bt[j * nx + i]) + (4*bt[j * nx + (i+1)]) - (bt[j * nx + (i+2)]) )*0.5; |
291 |
} |
292 |
|
293 |
i=nx-1; |
294 |
for (j = 0; j <= ny-1; j++) |
295 |
{ |
296 |
derx_bt[j * nx + i] = ( (3*bt[j * nx + i]) + (-4*bt[j * nx + (i-1)]) - (-bt[j * nx + (i-2)]) )*0.5; |
297 |
} |
298 |
|
299 |
j=0; |
300 |
for (i = 0; i <= nx-1; i++) |
301 |
{ |
302 |
dery_bt[j * nx + i] = ( (-3*bt[j*nx + i]) + (4*bt[(j+1) * nx + i]) - (bt[(j+2) * nx + i]) )*0.5; |
303 |
} |
304 |
|
305 |
j=ny-1; |
306 |
for (i = 0; i <= nx-1; i++) |
307 |
{ |
308 |
dery_bt[j * nx + i] = ( (3*bt[j * nx + i]) + (-4*bt[(j-1) * nx + i]) - (-bt[(j-2) * nx + i]) )*0.5; |
309 |
} |
310 |
|
311 |
// Calculate the sum only |
312 |
for (i = 1; i <= nx-2; i++) |
313 |
{ |
314 |
for (j = 1; j <= ny-2; j++) |
315 |
{ |
316 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
317 |
if ( (derx_bt[j * nx + i] + dery_bt[j * nx + i]) == 0) continue; |
318 |
if isnan(bt[j * nx + i]) continue; |
319 |
if isnan(bt[(j+1) * nx + i]) continue; |
320 |
if isnan(bt[(j-1) * nx + i]) continue; |
321 |
if isnan(bt[j * nx + i-1]) continue; |
322 |
if isnan(bt[j * nx + i+1]) continue; |
323 |
if isnan(bt_err[j * nx + i]) continue; |
324 |
if isnan(derx_bt[j * nx + i]) continue; |
325 |
if isnan(dery_bt[j * nx + i]) continue; |
326 |
sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ |
327 |
err += err_termBt[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ))+ |
328 |
err_termAt[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] )) ; |
329 |
count_mask++; |
330 |
} |
331 |
} |
332 |
|
333 |
*mean_derivative_btotal_ptr = (sum)/(count_mask); |
334 |
*mean_derivative_btotal_err_ptr = (sqrt(err))/(count_mask); |
335 |
//printf("MEANGBT=%f\n",*mean_derivative_btotal_ptr); |
336 |
//printf("MEANGBT_err=%f\n",*mean_derivative_btotal_err_ptr); |
337 |
|
338 |
return 0; |
339 |
} |
340 |
|
341 |
|
342 |
/*===========================================*/ |
343 |
/* Example function 6: Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */ |
344 |
|
345 |
int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh, float *err_termAh, float *err_termBh) |
346 |
{ |
347 |
|
348 |
int nx = dims[0]; |
349 |
int ny = dims[1]; |
350 |
int i = 0; |
351 |
int j = 0; |
352 |
int count_mask = 0; |
353 |
double sum= 0.0; |
354 |
double err =0.0; |
355 |
*mean_derivative_bh_ptr = 0.0; |
356 |
|
357 |
if (nx <= 0 || ny <= 0) return 1; |
358 |
|
359 |
/* brute force method of calculating the derivative (no consideration for edges) */ |
360 |
for (i = 1; i <= nx-2; i++) |
361 |
{ |
362 |
for (j = 0; j <= ny-1; j++) |
363 |
{ |
364 |
derx_bh[j * nx + i] = (bh[j * nx + i+1] - bh[j * nx + i-1])*0.5; |
365 |
err_termAh[j * nx + i] = (((bh[j * nx + (i+1)]-bh[j * nx + (i-1)])*(bh[j * nx + (i+1)]-bh[j * nx + (i-1)])) * (bh_err[j * nx + (i+1)]*bh_err[j * nx + (i+1)] + bh_err[j * nx + (i-1)]*bh_err[j * nx + (i-1)])); |
366 |
} |
367 |
} |
368 |
|
369 |
/* brute force method of calculating the derivative (no consideration for edges) */ |
370 |
for (i = 0; i <= nx-1; i++) |
371 |
{ |
372 |
for (j = 1; j <= ny-2; j++) |
373 |
{ |
374 |
dery_bh[j * nx + i] = (bh[(j+1) * nx + i] - bh[(j-1) * nx + i])*0.5; |
375 |
err_termBh[j * nx + i] = (((bh[ (j+1) * nx + i]-bh[(j-1) * nx + i])*(bh[(j+1) * nx + i]-bh[(j-1) * nx + i])) * (bh_err[(j+1) * nx + i]*bh_err[(j+1) * nx + i] + bh_err[(j-1) * nx + i]*bh_err[(j-1) * nx + i])); |
376 |
} |
377 |
} |
378 |
|
379 |
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
380 |
ignore the edges for the error terms as those arrays have been initialized to zero. |
381 |
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
382 |
i=0; |
383 |
for (j = 0; j <= ny-1; j++) |
384 |
{ |
385 |
derx_bh[j * nx + i] = ( (-3*bh[j * nx + i]) + (4*bh[j * nx + (i+1)]) - (bh[j * nx + (i+2)]) )*0.5; |
386 |
} |
387 |
|
388 |
i=nx-1; |
389 |
for (j = 0; j <= ny-1; j++) |
390 |
{ |
391 |
derx_bh[j * nx + i] = ( (3*bh[j * nx + i]) + (-4*bh[j * nx + (i-1)]) - (-bh[j * nx + (i-2)]) )*0.5; |
392 |
} |
393 |
|
394 |
j=0; |
395 |
for (i = 0; i <= nx-1; i++) |
396 |
{ |
397 |
dery_bh[j * nx + i] = ( (-3*bh[j*nx + i]) + (4*bh[(j+1) * nx + i]) - (bh[(j+2) * nx + i]) )*0.5; |
398 |
} |
399 |
|
400 |
j=ny-1; |
401 |
for (i = 0; i <= nx-1; i++) |
402 |
{ |
403 |
dery_bh[j * nx + i] = ( (3*bh[j * nx + i]) + (-4*bh[(j-1) * nx + i]) - (-bh[(j-2) * nx + i]) )*0.5; |
404 |
} |
405 |
|
406 |
|
407 |
for (i = 0; i <= nx-1; i++) |
408 |
{ |
409 |
for (j = 0; j <= ny-1; j++) |
410 |
{ |
411 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
412 |
if ( (derx_bh[j * nx + i] + dery_bh[j * nx + i]) == 0) continue; |
413 |
if isnan(bh[j * nx + i]) continue; |
414 |
if isnan(bh[(j+1) * nx + i]) continue; |
415 |
if isnan(bh[(j-1) * nx + i]) continue; |
416 |
if isnan(bh[j * nx + i-1]) continue; |
417 |
if isnan(bh[j * nx + i+1]) continue; |
418 |
if isnan(bh_err[j * nx + i]) continue; |
419 |
if isnan(derx_bh[j * nx + i]) continue; |
420 |
if isnan(dery_bh[j * nx + i]) continue; |
421 |
sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ |
422 |
err += err_termBh[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ))+ |
423 |
err_termAh[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] )) ; |
424 |
count_mask++; |
425 |
} |
426 |
} |
427 |
|
428 |
*mean_derivative_bh_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
429 |
*mean_derivative_bh_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
430 |
//printf("MEANGBH=%f\n",*mean_derivative_bh_ptr); |
431 |
//printf("MEANGBH_err=%f\n",*mean_derivative_bh_err_ptr); |
432 |
|
433 |
return 0; |
434 |
} |
435 |
|
436 |
/*===========================================*/ |
437 |
/* Example function 7: Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */ |
438 |
|
439 |
int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz, float *err_termA, float *err_termB) |
440 |
{ |
441 |
|
442 |
int nx = dims[0]; |
443 |
int ny = dims[1]; |
444 |
int i = 0; |
445 |
int j = 0; |
446 |
int count_mask = 0; |
447 |
double sum = 0.0; |
448 |
double err = 0.0; |
449 |
*mean_derivative_bz_ptr = 0.0; |
450 |
|
451 |
if (nx <= 0 || ny <= 0) return 1; |
452 |
|
453 |
/* brute force method of calculating the derivative (no consideration for edges) */ |
454 |
for (i = 1; i <= nx-2; i++) |
455 |
{ |
456 |
for (j = 0; j <= ny-1; j++) |
457 |
{ |
458 |
derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5; |
459 |
err_termA[j * nx + i] = (((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)])); |
460 |
} |
461 |
} |
462 |
|
463 |
/* brute force method of calculating the derivative (no consideration for edges) */ |
464 |
for (i = 0; i <= nx-1; i++) |
465 |
{ |
466 |
for (j = 1; j <= ny-2; j++) |
467 |
{ |
468 |
dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5; |
469 |
err_termB[j * nx + i] = (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i])); |
470 |
} |
471 |
} |
472 |
|
473 |
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
474 |
ignore the edges for the error terms as those arrays have been initialized to zero. |
475 |
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
476 |
i=0; |
477 |
for (j = 0; j <= ny-1; j++) |
478 |
{ |
479 |
derx_bz[j * nx + i] = ( (-3*bz[j * nx + i]) + (4*bz[j * nx + (i+1)]) - (bz[j * nx + (i+2)]) )*0.5; |
480 |
} |
481 |
|
482 |
i=nx-1; |
483 |
for (j = 0; j <= ny-1; j++) |
484 |
{ |
485 |
derx_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[j * nx + (i-1)]) - (-bz[j * nx + (i-2)]) )*0.5; |
486 |
} |
487 |
|
488 |
j=0; |
489 |
for (i = 0; i <= nx-1; i++) |
490 |
{ |
491 |
dery_bz[j * nx + i] = ( (-3*bz[j*nx + i]) + (4*bz[(j+1) * nx + i]) - (bz[(j+2) * nx + i]) )*0.5; |
492 |
} |
493 |
|
494 |
j=ny-1; |
495 |
for (i = 0; i <= nx-1; i++) |
496 |
{ |
497 |
dery_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[(j-1) * nx + i]) - (-bz[(j-2) * nx + i]) )*0.5; |
498 |
} |
499 |
|
500 |
|
501 |
for (i = 0; i <= nx-1; i++) |
502 |
{ |
503 |
for (j = 0; j <= ny-1; j++) |
504 |
{ |
505 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
506 |
if ( (derx_bz[j * nx + i] + dery_bz[j * nx + i]) == 0) continue; |
507 |
if isnan(bz[j * nx + i]) continue; |
508 |
if isnan(bz[(j+1) * nx + i]) continue; |
509 |
if isnan(bz[(j-1) * nx + i]) continue; |
510 |
if isnan(bz[j * nx + i-1]) continue; |
511 |
if isnan(bz[j * nx + i+1]) continue; |
512 |
if isnan(bz_err[j * nx + i]) continue; |
513 |
if isnan(derx_bz[j * nx + i]) continue; |
514 |
if isnan(dery_bz[j * nx + i]) continue; |
515 |
sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] ); /* Units of Gauss */ |
516 |
err += err_termB[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) + |
517 |
err_termA[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) ; |
518 |
count_mask++; |
519 |
} |
520 |
} |
521 |
|
522 |
*mean_derivative_bz_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
523 |
*mean_derivative_bz_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
524 |
//printf("MEANGBZ=%f\n",*mean_derivative_bz_ptr); |
525 |
//printf("MEANGBZ_err=%f\n",*mean_derivative_bz_err_ptr); |
526 |
|
527 |
return 0; |
528 |
} |
529 |
|
530 |
/*===========================================*/ |
531 |
/* Example function 8: Current Jz = (dBy/dx) - (dBx/dy) */ |
532 |
|
533 |
// In discretized space like data pixels, |
534 |
// the current (or curl of B) is calculated as |
535 |
// the integration of the field Bx and By along |
536 |
// the circumference of the data pixel divided by the area of the pixel. |
537 |
// One form of differencing (a word for the differential operator |
538 |
// in the discretized space) of the curl is expressed as |
539 |
// (dx * (Bx(i,j-1)+Bx(i,j)) / 2 |
540 |
// +dy * (By(i+1,j)+By(i,j)) / 2 |
541 |
// -dx * (Bx(i,j+1)+Bx(i,j)) / 2 |
542 |
// -dy * (By(i-1,j)+By(i,j)) / 2) / (dx * dy) |
543 |
// |
544 |
// |
545 |
// To change units from Gauss/pixel to mA/m^2 (the units for Jz in Leka and Barnes, 2003), |
546 |
// one must perform the following unit conversions: |
547 |
// (Gauss)(1/arcsec)(arcsec/meter)(Newton/Gauss*Ampere*meter)(Ampere^2/Newton)(milliAmpere/Ampere), or |
548 |
// (Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(1 T / 10^4 Gauss)(1 / 4*PI*10^-7)( 10^3 milliAmpere/Ampere), or |
549 |
// (Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(1000.), |
550 |
// where a Tesla is represented as a Newton/Ampere*meter. |
551 |
// |
552 |
// As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). |
553 |
// In that case, we would have the following: |
554 |
// (Gauss/pix)(1/0.5)(1/722500)(10^-4)(4*PI*10^7)(10^3), or |
555 |
// jz * (35.0) |
556 |
// |
557 |
// The units of total unsigned vertical current (us_i) are simply in A. In this case, we would have the following: |
558 |
// (Gauss/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(CDELT1)(CDELT1)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS) |
559 |
// = (Gauss/pix)(0.00010)(1/MUNAUGHT)(CDELT1)(RSUN_REF/RSUN_OBS) |
560 |
|
561 |
|
562 |
// Comment out random number generator, which can only run on solar3 |
563 |
// int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, |
564 |
// int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery, float *noisebx, |
565 |
// float *noiseby, float *noisebz) |
566 |
|
567 |
int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, |
568 |
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery, float *err_term1, float *err_term2) |
569 |
|
570 |
|
571 |
{ |
572 |
int nx = dims[0]; |
573 |
int ny = dims[1]; |
574 |
int i = 0; |
575 |
int j = 0; |
576 |
int count_mask = 0; |
577 |
|
578 |
if (nx <= 0 || ny <= 0) return 1; |
579 |
|
580 |
/* Calculate the derivative*/ |
581 |
/* brute force method of calculating the derivative (no consideration for edges) */ |
582 |
|
583 |
for (i = 1; i <= nx-2; i++) |
584 |
{ |
585 |
for (j = 0; j <= ny-1; j++) |
586 |
{ |
587 |
derx[j * nx + i] = (by[j * nx + i+1] - by[j * nx + i-1])*0.5; |
588 |
err_term1[j * nx + i] = (by_err[j * nx + i+1])*(by_err[j * nx + i+1]) + (by_err[j * nx + i-1])*(by_err[j * nx + i-1]); |
589 |
} |
590 |
} |
591 |
|
592 |
for (i = 0; i <= nx-1; i++) |
593 |
{ |
594 |
for (j = 1; j <= ny-2; j++) |
595 |
{ |
596 |
dery[j * nx + i] = (bx[(j+1) * nx + i] - bx[(j-1) * nx + i])*0.5; |
597 |
err_term2[j * nx + i] = (bx_err[(j+1) * nx + i])*(bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i])*(bx_err[(j-1) * nx + i]); |
598 |
} |
599 |
} |
600 |
|
601 |
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
602 |
ignore the edges for the error terms as those arrays have been initialized to zero. |
603 |
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
604 |
|
605 |
i=0; |
606 |
for (j = 0; j <= ny-1; j++) |
607 |
{ |
608 |
derx[j * nx + i] = ( (-3*by[j * nx + i]) + (4*by[j * nx + (i+1)]) - (by[j * nx + (i+2)]) )*0.5; |
609 |
} |
610 |
|
611 |
i=nx-1; |
612 |
for (j = 0; j <= ny-1; j++) |
613 |
{ |
614 |
derx[j * nx + i] = ( (3*by[j * nx + i]) + (-4*by[j * nx + (i-1)]) - (-by[j * nx + (i-2)]) )*0.5; |
615 |
} |
616 |
|
617 |
j=0; |
618 |
for (i = 0; i <= nx-1; i++) |
619 |
{ |
620 |
dery[j * nx + i] = ( (-3*bx[j*nx + i]) + (4*bx[(j+1) * nx + i]) - (bx[(j+2) * nx + i]) )*0.5; |
621 |
} |
622 |
|
623 |
j=ny-1; |
624 |
for (i = 0; i <= nx-1; i++) |
625 |
{ |
626 |
dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5; |
627 |
} |
628 |
|
629 |
|
630 |
for (i = 0; i <= nx-1; i++) |
631 |
{ |
632 |
for (j = 0; j <= ny-1; j++) |
633 |
{ |
634 |
// calculate jz at all points |
635 |
jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); // jz is in units of Gauss/pix |
636 |
jz_err[j * nx + i] = 0.5*sqrt( err_term1[j * nx + i] + err_term2[j * nx + i] ) ; |
637 |
jz_err_squared[j * nx + i]= (jz_err[j * nx + i]*jz_err[j * nx + i]); |
638 |
count_mask++; |
639 |
} |
640 |
} |
641 |
return 0; |
642 |
} |
643 |
|
644 |
/*===========================================*/ |
645 |
|
646 |
/* Example function 9: Compute quantities on Jz array */ |
647 |
// Compute mean and total current on Jz array. |
648 |
|
649 |
int computeJzsmooth(float *bx, float *by, int *dims, float *jz, float *jz_smooth, float *jz_err, float *jz_rms_err, float *jz_err_squared_smooth, |
650 |
float *mean_jz_ptr, float *mean_jz_err_ptr, float *us_i_ptr, float *us_i_err_ptr, int *mask, int *bitmask, |
651 |
float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) |
652 |
|
653 |
{ |
654 |
|
655 |
int nx = dims[0]; |
656 |
int ny = dims[1]; |
657 |
int i = 0; |
658 |
int j = 0; |
659 |
int count_mask = 0; |
660 |
double curl = 0.0; |
661 |
double us_i = 0.0; |
662 |
double err = 0.0; |
663 |
|
664 |
if (nx <= 0 || ny <= 0) return 1; |
665 |
|
666 |
/* At this point, use the smoothed Jz array with a Gaussian (FWHM of 4 pix and truncation width of 12 pixels) but keep the original array dimensions*/ |
667 |
for (i = 0; i <= nx-1; i++) |
668 |
{ |
669 |
for (j = 0; j <= ny-1; j++) |
670 |
{ |
671 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
672 |
if isnan(derx[j * nx + i]) continue; |
673 |
if isnan(dery[j * nx + i]) continue; |
674 |
if isnan(jz[j * nx + i]) continue; |
675 |
curl += (jz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */ |
676 |
us_i += fabs(jz[j * nx + i])*(cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT); /* us_i is in units of A */ |
677 |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]); |
678 |
count_mask++; |
679 |
} |
680 |
} |
681 |
|
682 |
/* Calculate mean vertical current density (mean_jz) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */ |
683 |
*mean_jz_ptr = curl/(count_mask); /* mean_jz gets populated as MEANJZD */ |
684 |
*mean_jz_err_ptr = (sqrt(err)/count_mask)*((1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.)); // error in the quantity MEANJZD |
685 |
|
686 |
*us_i_ptr = (us_i); /* us_i gets populated as TOTUSJZ */ |
687 |
*us_i_err_ptr = (sqrt(err))*((cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT)); // error in the quantity TOTUSJZ |
688 |
|
689 |
//printf("MEANJZD=%f\n",*mean_jz_ptr); |
690 |
//printf("MEANJZD_err=%f\n",*mean_jz_err_ptr); |
691 |
|
692 |
//printf("TOTUSJZ=%g\n",*us_i_ptr); |
693 |
//printf("TOTUSJZ_err=%g\n",*us_i_err_ptr); |
694 |
|
695 |
return 0; |
696 |
|
697 |
} |
698 |
|
699 |
/*===========================================*/ |
700 |
|
701 |
/* Example function 10: Twist Parameter, alpha */ |
702 |
|
703 |
// The twist parameter, alpha, is defined as alpha = Jz/Bz. In this case, the calculation |
704 |
// for alpha is weighted by Bz (following Hagino et al., http://adsabs.harvard.edu/abs/2004PASJ...56..831H): |
705 |
|
706 |
// numerator = sum of all Jz*Bz |
707 |
// denominator = sum of Bz*Bz |
708 |
// alpha = numerator/denominator |
709 |
|
710 |
// The units of alpha are in 1/Mm |
711 |
// The units of Jz are in Gauss/pix; the units of Bz are in Gauss. |
712 |
// |
713 |
// Therefore, the units of Jz/Bz = (Gauss/pix)(1/Gauss)(pix/arcsec)(arsec/meter)(meter/Mm), or |
714 |
// = (Gauss/pix)(1/Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(10^6) |
715 |
// = 1/Mm |
716 |
|
717 |
int computeAlpha(float *jz_err, float *bz_err, float *bz, int *dims, float *jz, float *jz_smooth, float *mean_alpha_ptr, float *mean_alpha_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
718 |
|
719 |
{ |
720 |
int nx = dims[0]; |
721 |
int ny = dims[1]; |
722 |
int i = 0; |
723 |
int j = 0; |
724 |
double alpha_total = 0.0; |
725 |
double C = ((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)); |
726 |
double total = 0.0; |
727 |
double A = 0.0; |
728 |
double B = 0.0; |
729 |
|
730 |
if (nx <= 0 || ny <= 0) return 1; |
731 |
for (i = 1; i < nx-1; i++) |
732 |
{ |
733 |
for (j = 1; j < ny-1; j++) |
734 |
{ |
735 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
736 |
if isnan(jz[j * nx + i]) continue; |
737 |
if isnan(bz[j * nx + i]) continue; |
738 |
if (jz[j * nx + i] == 0.0) continue; |
739 |
if (bz[j * nx + i] == 0.0) continue; |
740 |
A += jz[j*nx+i]*bz[j*nx+i]; |
741 |
B += bz[j*nx+i]*bz[j*nx+i]; |
742 |
} |
743 |
} |
744 |
|
745 |
for (i = 1; i < nx-1; i++) |
746 |
{ |
747 |
for (j = 1; j < ny-1; j++) |
748 |
{ |
749 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
750 |
if isnan(jz[j * nx + i]) continue; |
751 |
if isnan(bz[j * nx + i]) continue; |
752 |
if (jz[j * nx + i] == 0.0) continue; |
753 |
if (bz[j * nx + i] == 0.0) continue; |
754 |
total += bz[j*nx+i]*bz[j*nx+i]*jz_err[j*nx+i]*jz_err[j*nx+i] + (jz[j*nx+i]-2*bz[j*nx+i]*A/B)*(jz[j*nx+i]-2*bz[j*nx+i]*A/B)*bz_err[j*nx+i]*bz_err[j*nx+i]; |
755 |
} |
756 |
} |
757 |
|
758 |
/* Determine the absolute value of alpha. The units for alpha are 1/Mm */ |
759 |
alpha_total = ((A/B)*C); |
760 |
*mean_alpha_ptr = alpha_total; |
761 |
*mean_alpha_err_ptr = (C/B)*(sqrt(total)); |
762 |
|
763 |
return 0; |
764 |
} |
765 |
|
766 |
/*===========================================*/ |
767 |
/* Example function 11: Helicity (mean current helicty, total unsigned current helicity, absolute value of net current helicity) */ |
768 |
|
769 |
// The current helicity is defined as Bz*Jz and the units are G^2 / m |
770 |
// The units of Jz are in G/pix; the units of Bz are in G. |
771 |
// Therefore, the units of Bz*Jz = (Gauss)*(Gauss/pix) = (Gauss^2/pix)(pix/arcsec)(arcsec/meter) |
772 |
// = (Gauss^2/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF) |
773 |
// = G^2 / m. |
774 |
|
775 |
int computeHelicity(float *jz_err, float *jz_rms_err, float *bz_err, float *bz, int *dims, float *jz, float *mean_ih_ptr, |
776 |
float *mean_ih_err_ptr, float *total_us_ih_ptr, float *total_abs_ih_ptr, |
777 |
float *total_us_ih_err_ptr, float *total_abs_ih_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
778 |
|
779 |
{ |
780 |
|
781 |
int nx = dims[0]; |
782 |
int ny = dims[1]; |
783 |
int i = 0; |
784 |
int j = 0; |
785 |
int count_mask = 0; |
786 |
double sum = 0.0; |
787 |
double sum2 = 0.0; |
788 |
double err = 0.0; |
789 |
|
790 |
if (nx <= 0 || ny <= 0) return 1; |
791 |
|
792 |
for (i = 0; i < nx; i++) |
793 |
{ |
794 |
for (j = 0; j < ny; j++) |
795 |
{ |
796 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
797 |
if isnan(jz[j * nx + i]) continue; |
798 |
if isnan(bz[j * nx + i]) continue; |
799 |
if isnan(jz_err[j * nx + i]) continue; |
800 |
if isnan(bz_err[j * nx + i]) continue; |
801 |
if (bz[j * nx + i] == 0.0) continue; |
802 |
if (jz[j * nx + i] == 0.0) continue; |
803 |
sum += (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to MEANJZH and ABSNJZH |
804 |
sum2 += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to TOTUSJH |
805 |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]*bz[j * nx + i]*bz[j * nx + i]) + (bz_err[j * nx + i]*bz_err[j * nx + i]*jz[j * nx + i]*jz[j * nx + i]); |
806 |
count_mask++; |
807 |
} |
808 |
} |
809 |
|
810 |
*mean_ih_ptr = sum/count_mask ; /* Units are G^2 / m ; keyword is MEANJZH */ |
811 |
*total_us_ih_ptr = sum2 ; /* Units are G^2 / m ; keyword is TOTUSJH */ |
812 |
*total_abs_ih_ptr = fabs(sum) ; /* Units are G^2 / m ; keyword is ABSNJZH */ |
813 |
|
814 |
*mean_ih_err_ptr = (sqrt(err)/count_mask)*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity MEANJZH |
815 |
*total_us_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity TOTUSJH |
816 |
*total_abs_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity ABSNJZH |
817 |
|
818 |
//printf("MEANJZH=%f\n",*mean_ih_ptr); |
819 |
//printf("MEANJZH_err=%f\n",*mean_ih_err_ptr); |
820 |
|
821 |
//printf("TOTUSJH=%f\n",*total_us_ih_ptr); |
822 |
//printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr); |
823 |
|
824 |
//printf("ABSNJZH=%f\n",*total_abs_ih_ptr); |
825 |
//printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr); |
826 |
|
827 |
return 0; |
828 |
} |
829 |
|
830 |
/*===========================================*/ |
831 |
/* Example function 12: Sum of Absolute Value per polarity */ |
832 |
|
833 |
// The Sum of the Absolute Value per polarity is defined as the following: |
834 |
// fabs(sum(jz gt 0)) + fabs(sum(jz lt 0)) and the units are in Amperes per square arcsecond. |
835 |
// The units of jz are in G/pix. In this case, we would have the following: |
836 |
// Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF), |
837 |
// = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS) |
838 |
// |
839 |
// The error in this quantity is the same as the error in the mean vertical current (mean_jz_err). |
840 |
|
841 |
int computeSumAbsPerPolarity(float *jz_err, float *bz_err, float *bz, float *jz, int *dims, float *totaljzptr, float *totaljz_err_ptr, |
842 |
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
843 |
|
844 |
{ |
845 |
int nx = dims[0]; |
846 |
int ny = dims[1]; |
847 |
int i=0; |
848 |
int j=0; |
849 |
int count_mask=0; |
850 |
double sum1=0.0; |
851 |
double sum2=0.0; |
852 |
double err=0.0; |
853 |
*totaljzptr=0.0; |
854 |
|
855 |
if (nx <= 0 || ny <= 0) return 1; |
856 |
|
857 |
for (i = 0; i < nx; i++) |
858 |
{ |
859 |
for (j = 0; j < ny; j++) |
860 |
{ |
861 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
862 |
if isnan(bz[j * nx + i]) continue; |
863 |
if isnan(jz[j * nx + i]) continue; |
864 |
if (bz[j * nx + i] > 0) sum1 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
865 |
if (bz[j * nx + i] <= 0) sum2 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
866 |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]); |
867 |
count_mask++; |
868 |
} |
869 |
} |
870 |
|
871 |
*totaljzptr = fabs(sum1) + fabs(sum2); /* Units are Amperes per arcsecond */ |
872 |
*totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs)); |
873 |
//printf("SAVNCPP=%g\n",*totaljzptr); |
874 |
//printf("SAVNCPP_err=%g\n",*totaljz_err_ptr); |
875 |
|
876 |
return 0; |
877 |
} |
878 |
|
879 |
/*===========================================*/ |
880 |
/* Example function 13: Mean photospheric excess magnetic energy and total photospheric excess magnetic energy density */ |
881 |
// The units for magnetic energy density in cgs are ergs per cubic centimeter. The formula B^2/8*PI integrated over all space, dV |
882 |
// automatically yields erg per cubic centimeter for an input B in Gauss. Note that the 8*PI can come out of the integral; thus, |
883 |
// the integral is over B^2 dV and the 8*PI is divided at the end. |
884 |
// |
885 |
// Total magnetic energy is the magnetic energy density times dA, or the area, and the units are thus ergs/cm. To convert |
886 |
// ergs per centimeter cubed to ergs per centimeter, simply multiply by the area per pixel in cm: |
887 |
// erg/cm^3*(CDELT1^2)*(RSUN_REF/RSUN_OBS ^2)*(100.^2) |
888 |
// = erg/cm^3*(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2 |
889 |
// = erg/cm^3*(1.30501e15) |
890 |
// = erg/cm(1/pix^2) |
891 |
|
892 |
int computeFreeEnergy(float *bx_err, float *by_err, float *bx, float *by, float *bpx, float *bpy, int *dims, |
893 |
float *meanpotptr, float *meanpot_err_ptr, float *totpotptr, float *totpot_err_ptr, int *mask, int *bitmask, |
894 |
float cdelt1, double rsun_ref, double rsun_obs) |
895 |
|
896 |
{ |
897 |
int nx = dims[0]; |
898 |
int ny = dims[1]; |
899 |
int i = 0; |
900 |
int j = 0; |
901 |
int count_mask = 0; |
902 |
double sum = 0.0; |
903 |
double sum1 = 0.0; |
904 |
double err = 0.0; |
905 |
*totpotptr = 0.0; |
906 |
*meanpotptr = 0.0; |
907 |
|
908 |
if (nx <= 0 || ny <= 0) return 1; |
909 |
|
910 |
for (i = 0; i < nx; i++) |
911 |
{ |
912 |
for (j = 0; j < ny; j++) |
913 |
{ |
914 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
915 |
if isnan(bx[j * nx + i]) continue; |
916 |
if isnan(by[j * nx + i]) continue; |
917 |
sum += ( ((bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])) + ((by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])) )*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); |
918 |
sum1 += ( ((bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])) + ((by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])) ); |
919 |
err += 4.0*(bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])*(bx_err[j * nx + i]*bx_err[j * nx + i]) + |
920 |
4.0*(by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])*(by_err[j * nx + i]*by_err[j * nx + i]); |
921 |
count_mask++; |
922 |
} |
923 |
} |
924 |
|
925 |
/* Units of meanpotptr are ergs per centimeter */ |
926 |
*meanpotptr = (sum1) / (count_mask*8.*PI) ; /* Units are ergs per cubic centimeter */ |
927 |
*meanpot_err_ptr = (sqrt(err)) / (count_mask*8.*PI); // error in the quantity (sum)/(count_mask) |
928 |
|
929 |
/* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2; therefore, units of totpotptr are ergs per centimeter */ |
930 |
*totpotptr = (sum)/(8.*PI); |
931 |
*totpot_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0*(1/(8.*PI))); |
932 |
|
933 |
//printf("MEANPOT=%g\n",*meanpotptr); |
934 |
//printf("MEANPOT_err=%g\n",*meanpot_err_ptr); |
935 |
|
936 |
//printf("TOTPOT=%g\n",*totpotptr); |
937 |
//printf("TOTPOT_err=%g\n",*totpot_err_ptr); |
938 |
|
939 |
return 0; |
940 |
} |
941 |
|
942 |
/*===========================================*/ |
943 |
/* Example function 14: Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */ |
944 |
|
945 |
int computeShearAngle(float *bx_err, float *by_err, float *bz_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, |
946 |
float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask) |
947 |
|
948 |
|
949 |
{ |
950 |
int nx = dims[0]; |
951 |
int ny = dims[1]; |
952 |
int i = 0; |
953 |
int j = 0; |
954 |
float count_mask = 0; |
955 |
float count = 0; |
956 |
double dotproduct = 0.0; |
957 |
double magnitude_potential = 0.0; |
958 |
double magnitude_vector = 0.0; |
959 |
double shear_angle = 0.0; |
960 |
double denominator = 0.0; |
961 |
double term1 = 0.0; |
962 |
double term2 = 0.0; |
963 |
double term3 = 0.0; |
964 |
double sumsum = 0.0; |
965 |
double err = 0.0; |
966 |
double part1 = 0.0; |
967 |
double part2 = 0.0; |
968 |
double part3 = 0.0; |
969 |
*area_w_shear_gt_45ptr = 0.0; |
970 |
*meanshear_angleptr = 0.0; |
971 |
|
972 |
if (nx <= 0 || ny <= 0) return 1; |
973 |
|
974 |
for (i = 0; i < nx; i++) |
975 |
{ |
976 |
for (j = 0; j < ny; j++) |
977 |
{ |
978 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
979 |
if isnan(bpx[j * nx + i]) continue; |
980 |
if isnan(bpy[j * nx + i]) continue; |
981 |
if isnan(bpz[j * nx + i]) continue; |
982 |
if isnan(bz[j * nx + i]) continue; |
983 |
if isnan(bx[j * nx + i]) continue; |
984 |
if isnan(by[j * nx + i]) continue; |
985 |
if isnan(bx_err[j * nx + i]) continue; |
986 |
if isnan(by_err[j * nx + i]) continue; |
987 |
if isnan(bz_err[j * nx + i]) continue; |
988 |
|
989 |
/* For mean 3D shear angle, percentage with shear greater than 45*/ |
990 |
dotproduct = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]); |
991 |
magnitude_potential = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i])); |
992 |
magnitude_vector = sqrt( (bx[j * nx + i]*bx[j * nx + i]) + (by[j * nx + i]*by[j * nx + i]) + (bz[j * nx + i]*bz[j * nx + i]) ); |
993 |
//printf("dotproduct=%f\n",dotproduct); |
994 |
//printf("magnitude_potential=%f\n",magnitude_potential); |
995 |
//printf("magnitude_vector=%f\n",magnitude_vector); |
996 |
|
997 |
shear_angle = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI); |
998 |
sumsum += shear_angle; |
999 |
//printf("shear_angle=%f\n",shear_angle); |
1000 |
count ++; |
1001 |
|
1002 |
if (shear_angle > 45) count_mask ++; |
1003 |
|
1004 |
// For the error analysis |
1005 |
|
1006 |
term1 = bx[j * nx + i]*by[j * nx + i]*bpy[j * nx + i] - by[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bz[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bz[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i]; |
1007 |
term2 = bx[j * nx + i]*bx[j * nx + i]*bpy[j * nx + i] - bx[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bx[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i] - bz[j * nx + i]*by[j * nx + i]*bpz[j * nx + i]; |
1008 |
term3 = bx[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bx[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*by[j * nx + i]*bpz[j * nx + i] - by[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i]; |
1009 |
|
1010 |
part1 = bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]; |
1011 |
part2 = bpx[j * nx + i]*bpx[j * nx + i] + bpy[j * nx + i]*bpy[j * nx + i] + bpz[j * nx + i]*bpz[j * nx + i]; |
1012 |
part3 = bx[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*bpy[j * nx + i] + bz[j * nx + i]*bpz[j * nx + i]; |
1013 |
|
1014 |
// denominator is squared |
1015 |
denominator = part1*part1*part1*part2*(1.0-((part3*part3)/(part1*part2))); |
1016 |
|
1017 |
err = (term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) + |
1018 |
(term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) + |
1019 |
(term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) ; |
1020 |
|
1021 |
} |
1022 |
} |
1023 |
/* For mean 3D shear angle, area with shear greater than 45*/ |
1024 |
*meanshear_angleptr = (sumsum)/(count); /* Units are degrees */ |
1025 |
*meanshear_angle_err_ptr = (sqrt(err)/count_mask)*(180./PI); |
1026 |
|
1027 |
/* The area here is a fractional area -- the % of the total area. This has no error associated with it. */ |
1028 |
*area_w_shear_gt_45ptr = (count_mask/(count))*(100.0); |
1029 |
|
1030 |
//printf("MEANSHR=%f\n",*meanshear_angleptr); |
1031 |
//printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr); |
1032 |
//printf("SHRGT45=%f\n",*area_w_shear_gt_45ptr); |
1033 |
|
1034 |
return 0; |
1035 |
} |
1036 |
|
1037 |
/*===========================================*/ |
1038 |
/* Example function 15: R parameter as defined in Schrijver, 2007 */ |
1039 |
// |
1040 |
// Note that there is a restriction on the function fsample() |
1041 |
// If the following occurs: |
1042 |
// nx_out > floor((ny_in-1)/scale + 1) |
1043 |
// ny_out > floor((ny_in-1)/scale + 1), |
1044 |
// where n*_out are the dimensions of the output array and n*_in |
1045 |
// are the dimensions of the input array, fsample() will usually result |
1046 |
// in a segfault (though not always, depending on how the segfault was accessed.) |
1047 |
|
1048 |
int computeR(float *bz_err, float *los, int *dims, float *Rparam, float cdelt1, |
1049 |
float *rim, float *p1p0, float *p1n0, float *p1p, float *p1n, float *p1, |
1050 |
float *pmap, int nx1, int ny1, |
1051 |
int scale, float *p1pad, int nxp, int nyp, float *pmapn) |
1052 |
|
1053 |
{ |
1054 |
int nx = dims[0]; |
1055 |
int ny = dims[1]; |
1056 |
int i = 0; |
1057 |
int j = 0; |
1058 |
int index, index1; |
1059 |
double sum = 0.0; |
1060 |
double err = 0.0; |
1061 |
*Rparam = 0.0; |
1062 |
struct fresize_struct fresboxcar, fresgauss; |
1063 |
struct fint_struct fints; |
1064 |
float sigma = 10.0/2.3548; |
1065 |
|
1066 |
// set up convolution kernels |
1067 |
init_fresize_boxcar(&fresboxcar,1,1); |
1068 |
init_fresize_gaussian(&fresgauss,sigma,20,1); |
1069 |
|
1070 |
// =============== [STEP 1] =============== |
1071 |
// bin the line-of-sight magnetogram down by a factor of scale |
1072 |
fsample(los, rim, nx, ny, nx, nx1, ny1, nx1, scale, 0, 0, 0.0); |
1073 |
|
1074 |
// =============== [STEP 2] =============== |
1075 |
// identify positive and negative pixels greater than +/- 150 gauss |
1076 |
// and label those pixels with a 1.0 in arrays p1p0 and p1n0 |
1077 |
for (i = 0; i < nx1; i++) |
1078 |
{ |
1079 |
for (j = 0; j < ny1; j++) |
1080 |
{ |
1081 |
index = j * nx1 + i; |
1082 |
if (rim[index] > 150) |
1083 |
p1p0[index]=1.0; |
1084 |
else |
1085 |
p1p0[index]=0.0; |
1086 |
if (rim[index] < -150) |
1087 |
p1n0[index]=1.0; |
1088 |
else |
1089 |
p1n0[index]=0.0; |
1090 |
} |
1091 |
} |
1092 |
|
1093 |
// =============== [STEP 3] =============== |
1094 |
// smooth each of the negative and positive pixel bitmaps |
1095 |
fresize(&fresboxcar, p1p0, p1p, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); |
1096 |
fresize(&fresboxcar, p1n0, p1n, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); |
1097 |
|
1098 |
// =============== [STEP 4] =============== |
1099 |
// find the pixels for which p1p and p1n are both equal to 1. |
1100 |
// this defines the polarity inversion line |
1101 |
for (i = 0; i < nx1; i++) |
1102 |
{ |
1103 |
for (j = 0; j < ny1; j++) |
1104 |
{ |
1105 |
index = j * nx1 + i; |
1106 |
if ((p1p[index] > 0.0) && (p1n[index] > 0.0)) |
1107 |
p1[index]=1.0; |
1108 |
else |
1109 |
p1[index]=0.0; |
1110 |
} |
1111 |
} |
1112 |
|
1113 |
// pad p1 with zeroes so that the gaussian colvolution in step 5 |
1114 |
// does not cut off data within hwidth of the edge |
1115 |
|
1116 |
// step i: zero p1pad |
1117 |
for (i = 0; i < nxp; i++) |
1118 |
{ |
1119 |
for (j = 0; j < nyp; j++) |
1120 |
{ |
1121 |
index = j * nxp + i; |
1122 |
p1pad[index]=0.0; |
1123 |
} |
1124 |
} |
1125 |
|
1126 |
// step ii: place p1 at the center of p1pad |
1127 |
for (i = 0; i < nx1; i++) |
1128 |
{ |
1129 |
for (j = 0; j < ny1; j++) |
1130 |
{ |
1131 |
index = j * nx1 + i; |
1132 |
index1 = (j+20) * nxp + (i+20); |
1133 |
p1pad[index1]=p1[index]; |
1134 |
} |
1135 |
} |
1136 |
|
1137 |
// =============== [STEP 5] =============== |
1138 |
// convolve the polarity inversion line map with a gaussian |
1139 |
// to identify the region near the plarity inversion line |
1140 |
// the resultant array is called pmap |
1141 |
fresize(&fresgauss, p1pad, pmap, nxp, nyp, nxp, nxp, nyp, nxp, 0, 0, 0.0); |
1142 |
|
1143 |
|
1144 |
// select out the nx1 x ny1 non-padded array within pmap |
1145 |
for (i = 0; i < nx1; i++) |
1146 |
{ |
1147 |
for (j = 0; j < ny1; j++) |
1148 |
{ |
1149 |
index = j * nx1 + i; |
1150 |
index1 = (j+20) * nxp + (i+20); |
1151 |
pmapn[index]=pmap[index1]; |
1152 |
} |
1153 |
} |
1154 |
|
1155 |
// =============== [STEP 6] =============== |
1156 |
// the R parameter is calculated |
1157 |
for (i = 0; i < nx1; i++) |
1158 |
{ |
1159 |
for (j = 0; j < ny1; j++) |
1160 |
{ |
1161 |
index = j * nx1 + i; |
1162 |
if isnan(pmapn[index]) continue; |
1163 |
if isnan(rim[index]) continue; |
1164 |
sum += pmapn[index]*abs(rim[index]); |
1165 |
} |
1166 |
} |
1167 |
|
1168 |
if (sum < 1.0) |
1169 |
*Rparam = 0.0; |
1170 |
else |
1171 |
*Rparam = log10(sum); |
1172 |
|
1173 |
//printf("R_VALUE=%f\n",*Rparam); |
1174 |
|
1175 |
free_fresize(&fresboxcar); |
1176 |
free_fresize(&fresgauss); |
1177 |
|
1178 |
return 0; |
1179 |
|
1180 |
} |
1181 |
|
1182 |
/*===========================================*/ |
1183 |
/* Example function 16: Lorentz force as defined in Fisher, 2012 */ |
1184 |
// |
1185 |
// This calculation is adapted from Xudong's code |
1186 |
// at /proj/cgem/lorentz/apps/lorentz.c |
1187 |
|
1188 |
int computeLorentz(float *bx, float *by, float *bz, float *fx, float *fy, float *fz, int *dims, |
1189 |
float *totfx_ptr, float *totfy_ptr, float *totfz_ptr, float *totbsq_ptr, |
1190 |
float *epsx_ptr, float *epsy_ptr, float *epsz_ptr, int *mask, int *bitmask, |
1191 |
float cdelt1, double rsun_ref, double rsun_obs) |
1192 |
|
1193 |
{ |
1194 |
|
1195 |
int nx = dims[0]; |
1196 |
int ny = dims[1]; |
1197 |
int nxny = nx*ny; |
1198 |
int j = 0; |
1199 |
int index; |
1200 |
double totfx = 0, totfy = 0, totfz = 0; |
1201 |
double bsq = 0, totbsq = 0; |
1202 |
double epsx = 0, epsy = 0, epsz = 0; |
1203 |
double area = cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
1204 |
double k_h = -1.0 * area / (4. * PI) / 1.0e20; |
1205 |
double k_z = area / (8. * PI) / 1.0e20; |
1206 |
|
1207 |
if (nx <= 0 || ny <= 0) return 1; |
1208 |
|
1209 |
for (int i = 0; i < nxny; i++) |
1210 |
{ |
1211 |
if ( mask[i] < 70 || bitmask[i] < 30 ) continue; |
1212 |
if isnan(bx[i]) continue; |
1213 |
if isnan(by[i]) continue; |
1214 |
if isnan(bz[i]) continue; |
1215 |
fx[i] = bx[i] * bz[i] * k_h; |
1216 |
fy[i] = by[i] * bz[i] * k_h; |
1217 |
fz[i] = (bx[i] * bx[i] + by[i] * by[i] - bz[i] * bz[i]) * k_z; |
1218 |
bsq = bx[i] * bx[i] + by[i] * by[i] + bz[i] * bz[i]; |
1219 |
totfx += fx[i]; totfy += fy[i]; totfz += fz[i]; |
1220 |
totbsq += bsq; |
1221 |
} |
1222 |
|
1223 |
*totfx_ptr = totfx; |
1224 |
*totfy_ptr = totfy; |
1225 |
*totfz_ptr = totfz; |
1226 |
*totbsq_ptr = totbsq; |
1227 |
*epsx_ptr = (totfx / k_h) / totbsq; |
1228 |
*epsy_ptr = (totfy / k_h) / totbsq; |
1229 |
*epsz_ptr = (totfz / k_z) / totbsq; |
1230 |
|
1231 |
//printf("TOTBSQ=%f\n",*totbsq_ptr); |
1232 |
|
1233 |
return 0; |
1234 |
|
1235 |
} |
1236 |
|
1237 |
/*==================KEIJI'S CODE =========================*/ |
1238 |
|
1239 |
// #include <omp.h> |
1240 |
#include <math.h> |
1241 |
|
1242 |
void greenpot(float *bx, float *by, float *bz, int nnx, int nny) |
1243 |
{ |
1244 |
/* local workings */ |
1245 |
int inx, iny, i, j, n; |
1246 |
/* local array */ |
1247 |
float *pfpot, *rdist; |
1248 |
pfpot=(float *)malloc(sizeof(float) *nnx*nny); |
1249 |
rdist=(float *)malloc(sizeof(float) *nnx*nny); |
1250 |
float *bztmp; |
1251 |
bztmp=(float *)malloc(sizeof(float) *nnx*nny); |
1252 |
/* make nan */ |
1253 |
// unsigned long long llnan = 0x7ff0000000000000; |
1254 |
// float NAN = (float)(llnan); |
1255 |
|
1256 |
// #pragma omp parallel for private (inx) |
1257 |
for (iny=0; iny < nny; iny++){for (inx=0; inx < nnx; inx++){pfpot[nnx*iny+inx] = 0.0;}} |
1258 |
// #pragma omp parallel for private (inx) |
1259 |
for (iny=0; iny < nny; iny++){for (inx=0; inx < nnx; inx++){rdist[nnx*iny+inx] = 0.0;}} |
1260 |
// #pragma omp parallel for private (inx) |
1261 |
for (iny=0; iny < nny; iny++){for (inx=0; inx < nnx; inx++){bx[nnx*iny+inx] = 0.0;}} |
1262 |
// #pragma omp parallel for private (inx) |
1263 |
for (iny=0; iny < nny; iny++){for (inx=0; inx < nnx; inx++){by[nnx*iny+inx] = 0.0;}} |
1264 |
// #pragma omp parallel for private (inx) |
1265 |
for (iny=0; iny < nny; iny++){for (inx=0; inx < nnx; inx++) |
1266 |
{ |
1267 |
float val0 = bz[nnx*iny + inx]; |
1268 |
if (isnan(val0)){bztmp[nnx*iny + inx] = 0.0;}else{bztmp[nnx*iny + inx] = val0;} |
1269 |
}} |
1270 |
|
1271 |
// dz is the monopole depth |
1272 |
float dz = 0.001; |
1273 |
|
1274 |
// #pragma omp parallel for private (inx) |
1275 |
for (iny=0; iny < nny; iny++){for (inx=0; inx < nnx; inx++) |
1276 |
{ |
1277 |
float rdd, rdd1, rdd2; |
1278 |
float r; |
1279 |
rdd1 = (float)(inx); |
1280 |
rdd2 = (float)(iny); |
1281 |
rdd = rdd1 * rdd1 + rdd2 * rdd2 + dz * dz; |
1282 |
rdist[nnx*iny+inx] = 1.0/sqrt(rdd); |
1283 |
}} |
1284 |
|
1285 |
int iwindow; |
1286 |
if (nnx > nny) {iwindow = nnx;} else {iwindow = nny;} |
1287 |
float rwindow; |
1288 |
rwindow = (float)(iwindow); |
1289 |
rwindow = rwindow * rwindow + 0.01; // must be of square |
1290 |
|
1291 |
rwindow = 1.0e2; // limit the window size to be 10. |
1292 |
|
1293 |
rwindow = sqrt(rwindow); |
1294 |
iwindow = (int)(rwindow); |
1295 |
|
1296 |
// #pragma omp parallel for private(inx) |
1297 |
for (iny=0;iny<nny;iny++){for (inx=0;inx<nnx;inx++) |
1298 |
{ |
1299 |
float val0 = bz[nnx*iny + inx]; |
1300 |
if (isnan(val0)) |
1301 |
{ |
1302 |
pfpot[nnx*iny + inx] = 0.0; // hmmm.. NAN; |
1303 |
} |
1304 |
else |
1305 |
{ |
1306 |
float sum; |
1307 |
sum = 0.0; |
1308 |
int j2, i2; |
1309 |
int j2s, j2e, i2s, i2e; |
1310 |
j2s = iny - iwindow; |
1311 |
j2e = iny + iwindow; |
1312 |
if (j2s < 0){j2s = 0;} |
1313 |
if (j2e > nny){j2e = nny;} |
1314 |
i2s = inx - iwindow; |
1315 |
i2e = inx + iwindow; |
1316 |
if (i2s < 0){i2s = 0;} |
1317 |
if (i2e > nnx){i2e = nnx;} |
1318 |
|
1319 |
for (j2=j2s;j2<j2e;j2++){for (i2=i2s;i2<i2e;i2++) |
1320 |
{ |
1321 |
float val1 = bztmp[nnx*j2 + i2]; |
1322 |
float rr, r1, r2; |
1323 |
// r1 = (float)(i2 - inx); |
1324 |
// r2 = (float)(j2 - iny); |
1325 |
// rr = r1*r1 + r2*r2; |
1326 |
// if (rr < rwindow) |
1327 |
// { |
1328 |
int di, dj; |
1329 |
di = abs(i2 - inx); |
1330 |
dj = abs(j2 - iny); |
1331 |
sum = sum + val1 * rdist[nnx * dj + di] * dz; |
1332 |
// } |
1333 |
} } |
1334 |
pfpot[nnx*iny + inx] = sum; // Note that this is a simplified definition. |
1335 |
} |
1336 |
} } // end of OpenMP parallelism |
1337 |
|
1338 |
// #pragma omp parallel for private(inx) |
1339 |
for (iny=1; iny < nny - 1; iny++){for (inx=1; inx < nnx - 1; inx++) |
1340 |
{ |
1341 |
bx[nnx*iny + inx] = -(pfpot[nnx*iny + (inx+1)]-pfpot[nnx*iny + (inx-1)]) * 0.5; |
1342 |
by[nnx*iny + inx] = -(pfpot[nnx*(iny+1) + inx]-pfpot[nnx*(iny-1) + inx]) * 0.5; |
1343 |
} } // end of OpenMP parallelism |
1344 |
|
1345 |
free(rdist); |
1346 |
free(pfpot); |
1347 |
free(bztmp); |
1348 |
} // end of void func. greenpot |
1349 |
|
1350 |
|
1351 |
/*===========END OF KEIJI'S CODE =========================*/ |
1352 |
|
1353 |
char *sw_functions_version() // Returns CVS version of sw_functions.c |
1354 |
{ |
1355 |
return strdup("$Id"); |
1356 |
} |
1357 |
|
1358 |
/* ---------------- end of this file ----------------*/ |