1 |
|
2 |
/*=========================================== |
3 |
|
4 |
The following functions calculate these spaceweather indices from the vector magnetic field data: |
5 |
|
6 |
USFLUX Total unsigned flux in Maxwells |
7 |
MEANGAM Mean inclination angle, gamma, in degrees |
8 |
MEANGBT Mean value of the total field gradient, in Gauss/Mm |
9 |
MEANGBZ Mean value of the vertical field gradient, in Gauss/Mm |
10 |
MEANGBH Mean value of the horizontal field gradient, in Gauss/Mm |
11 |
MEANJZD Mean vertical current density, in mA/m2 |
12 |
TOTUSJZ Total unsigned vertical current, in Amperes |
13 |
MEANALP Mean twist parameter, alpha, in 1/Mm |
14 |
MEANJZH Mean current helicity in G2/m |
15 |
TOTUSJH Total unsigned current helicity in G2/m |
16 |
ABSNJZH Absolute value of the net current helicity in G2/m |
17 |
SAVNCPP Sum of the Absolute Value of the Net Currents Per Polarity in Amperes |
18 |
MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter |
19 |
TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter |
20 |
MEANSHR Mean shear angle (measured using Btotal) in degrees |
21 |
CMASK The total number of pixels that contributed to the calculation of all the indices listed above |
22 |
|
23 |
And these spaceweather indices from the line-of-sight magnetic field data: |
24 |
USFLUXL Total unsigned flux in Maxwells |
25 |
MEANGBL Mean value of the line-of-sight field gradient, in Gauss/Mm |
26 |
CMASKL The total number of pixels that contributed to the calculation of USFLUXL and MEANGBL |
27 |
R_VALUE Karel Schrijver's R parameter |
28 |
|
29 |
The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and |
30 |
pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD |
31 |
coordinate bitmaps are interpolated for certain data (at the time of this CVS submit, all data |
32 |
prior to 2013.08.21_17:24:00_TAI contain interpolated bitmaps; data post-2013.08.21_17:24:00_TAI |
33 |
contain nearest-neighbor bitmaps). |
34 |
|
35 |
In the CCD coordinates, this means that we are selecting the pixels that equal 90 in conf_disambig |
36 |
and the pixels that equal 33 or 34 in bitmap. Here are the definitions of the pixel values: |
37 |
|
38 |
For conf_disambig: |
39 |
50 : not all solutions agree (weak field method applied) |
40 |
60 : not all solutions agree (weak field + annealed) |
41 |
90 : all solutions agree (strong field + annealed) |
42 |
0 : not disambiguated |
43 |
|
44 |
For bitmap: |
45 |
1 : weak field outside smooth bounding curve |
46 |
2 : strong field outside smooth bounding curve |
47 |
33 : weak field inside smooth bounding curve |
48 |
34 : strong field inside smooth bounding curve |
49 |
|
50 |
Written by Monica Bobra 15 August 2012 |
51 |
Potential Field code (appended) written by Keiji Hayashi |
52 |
Error analysis modification 21 October 2013 |
53 |
|
54 |
===========================================*/ |
55 |
#include <math.h> |
56 |
#include <mkl.h> |
57 |
|
58 |
#define PI (M_PI) |
59 |
#define MUNAUGHT (0.0000012566370614) /* magnetic constant */ |
60 |
|
61 |
/*===========================================*/ |
62 |
|
63 |
/* Example function 1: Compute total unsigned flux in units of G/cm^2 */ |
64 |
|
65 |
// To compute the unsigned flux, we simply calculate |
66 |
// flux = surface integral [(vector Bz) dot (normal vector)], |
67 |
// = surface integral [(magnitude Bz)*(magnitude normal)*(cos theta)]. |
68 |
// However, since the field is radial, we will assume cos theta = 1. |
69 |
// Therefore the pixels only need to be corrected for the projection. |
70 |
|
71 |
// To convert G to G*cm^2, simply multiply by the number of square centimeters per pixel. |
72 |
// As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). |
73 |
// (Gauss/pix^2)(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.cm/m)^2 |
74 |
// =Gauss*cm^2 |
75 |
|
76 |
int computeAbsFlux(float *bz_err, float *bz, int *dims, float *absFlux, |
77 |
float *mean_vf_ptr, float *mean_vf_err_ptr, float *count_mask_ptr, int *mask, |
78 |
int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
79 |
|
80 |
{ |
81 |
|
82 |
int nx = dims[0]; |
83 |
int ny = dims[1]; |
84 |
int i = 0; |
85 |
int j = 0; |
86 |
int count_mask = 0; |
87 |
double sum = 0.0; |
88 |
double err = 0.0; |
89 |
*absFlux = 0.0; |
90 |
*mean_vf_ptr = 0.0; |
91 |
|
92 |
|
93 |
if (nx <= 0 || ny <= 0) return 1; |
94 |
|
95 |
for (i = 0; i < nx; i++) |
96 |
{ |
97 |
for (j = 0; j < ny; j++) |
98 |
{ |
99 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
100 |
if isnan(bz[j * nx + i]) continue; |
101 |
sum += (fabs(bz[j * nx + i])); |
102 |
err += bz_err[j * nx + i]*bz_err[j * nx + i]; |
103 |
count_mask++; |
104 |
} |
105 |
} |
106 |
|
107 |
*mean_vf_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
108 |
*mean_vf_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); // error in the unsigned flux |
109 |
*count_mask_ptr = count_mask; |
110 |
return 0; |
111 |
} |
112 |
|
113 |
/*===========================================*/ |
114 |
/* Example function 2: Calculate Bh, the horizontal field, in units of Gauss */ |
115 |
// Native units of Bh are Gauss |
116 |
|
117 |
int computeBh(float *bx_err, float *by_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, |
118 |
float *mean_hf_ptr, int *mask, int *bitmask) |
119 |
|
120 |
{ |
121 |
|
122 |
int nx = dims[0]; |
123 |
int ny = dims[1]; |
124 |
int i = 0; |
125 |
int j = 0; |
126 |
int count_mask = 0; |
127 |
double sum = 0.0; |
128 |
*mean_hf_ptr = 0.0; |
129 |
|
130 |
if (nx <= 0 || ny <= 0) return 1; |
131 |
|
132 |
for (i = 0; i < nx; i++) |
133 |
{ |
134 |
for (j = 0; j < ny; j++) |
135 |
{ |
136 |
if isnan(bx[j * nx + i]) |
137 |
{ |
138 |
bh[j * nx + i] = NAN; |
139 |
bh_err[j * nx + i] = NAN; |
140 |
continue; |
141 |
} |
142 |
if isnan(by[j * nx + i]) |
143 |
{ |
144 |
bh[j * nx + i] = NAN; |
145 |
bh_err[j * nx + i] = NAN; |
146 |
continue; |
147 |
} |
148 |
bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] ); |
149 |
sum += bh[j * nx + i]; |
150 |
bh_err[j * nx + i]=sqrt( bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i])/ bh[j * nx + i]; |
151 |
count_mask++; |
152 |
} |
153 |
} |
154 |
|
155 |
*mean_hf_ptr = sum/(count_mask); // would be divided by nx*ny if shape of count_mask = shape of magnetogram |
156 |
|
157 |
return 0; |
158 |
} |
159 |
|
160 |
/*===========================================*/ |
161 |
/* Example function 3: Calculate Gamma in units of degrees */ |
162 |
// Native units of atan(x) are in radians; to convert from radians to degrees, multiply by (180./PI) |
163 |
// |
164 |
// Error analysis calculations are done in radians (since derivatives are only true in units of radians), |
165 |
// and multiplied by (180./PI) at the end for consistency in units. |
166 |
|
167 |
int computeGamma(float *bz_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, |
168 |
float *mean_gamma_ptr, float *mean_gamma_err_ptr, int *mask, int *bitmask) |
169 |
{ |
170 |
int nx = dims[0]; |
171 |
int ny = dims[1]; |
172 |
int i = 0; |
173 |
int j = 0; |
174 |
int count_mask = 0; |
175 |
double sum = 0.0; |
176 |
double err = 0.0; |
177 |
*mean_gamma_ptr = 0.0; |
178 |
|
179 |
if (nx <= 0 || ny <= 0) return 1; |
180 |
|
181 |
for (i = 0; i < nx; i++) |
182 |
{ |
183 |
for (j = 0; j < ny; j++) |
184 |
{ |
185 |
if (bh[j * nx + i] > 100) |
186 |
{ |
187 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
188 |
if isnan(bz[j * nx + i]) continue; |
189 |
if isnan(bz_err[j * nx + i]) continue; |
190 |
if isnan(bh_err[j * nx + i]) continue; |
191 |
if isnan(bh[j * nx + i]) continue; |
192 |
if (bz[j * nx + i] == 0) continue; |
193 |
sum += fabs(atan(bh[j * nx + i]/fabs(bz[j * nx + i])))*(180./PI); |
194 |
err += (1/(1+((bh[j * nx + i]*bh[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))))*(1/(1+((bh[j * nx + i]*bh[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])))) * |
195 |
( ((bh_err[j * nx + i]*bh_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])) + |
196 |
((bh[j * nx + i]*bh[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]*bz[j * nx + i]*bz[j * nx + i])) ); |
197 |
count_mask++; |
198 |
} |
199 |
} |
200 |
} |
201 |
|
202 |
*mean_gamma_ptr = sum/count_mask; |
203 |
*mean_gamma_err_ptr = (sqrt(err)/(count_mask))*(180./PI); |
204 |
//printf("MEANGAM=%f\n",*mean_gamma_ptr); |
205 |
//printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr); |
206 |
return 0; |
207 |
} |
208 |
|
209 |
/*===========================================*/ |
210 |
/* Example function 4: Calculate B_Total*/ |
211 |
// Native units of B_Total are in gauss |
212 |
|
213 |
int computeB_total(float *bx_err, float *by_err, float *bz_err, float *bt_err, float *bx, float *by, float *bz, float *bt, int *dims, int *mask, int *bitmask) |
214 |
{ |
215 |
|
216 |
int nx = dims[0]; |
217 |
int ny = dims[1]; |
218 |
int i = 0; |
219 |
int j = 0; |
220 |
int count_mask = 0; |
221 |
|
222 |
if (nx <= 0 || ny <= 0) return 1; |
223 |
|
224 |
for (i = 0; i < nx; i++) |
225 |
{ |
226 |
for (j = 0; j < ny; j++) |
227 |
{ |
228 |
if isnan(bx[j * nx + i]) |
229 |
{ |
230 |
bt[j * nx + i] = NAN; |
231 |
bt_err[j * nx + i] = NAN; |
232 |
continue; |
233 |
} |
234 |
if isnan(by[j * nx + i]) |
235 |
{ |
236 |
bt[j * nx + i] = NAN; |
237 |
bt_err[j * nx + i] = NAN; |
238 |
continue; |
239 |
} |
240 |
if isnan(bz[j * nx + i]) |
241 |
{ |
242 |
bt[j * nx + i] = NAN; |
243 |
bt_err[j * nx + i] = NAN; |
244 |
continue; |
245 |
} |
246 |
bt[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]); |
247 |
bt_err[j * nx + i]=sqrt(bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i] ) / bt[j * nx + i]; |
248 |
} |
249 |
} |
250 |
return 0; |
251 |
} |
252 |
|
253 |
/*===========================================*/ |
254 |
/* Example function 5: Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */ |
255 |
|
256 |
int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr, float *err_termAt, float *err_termBt) |
257 |
{ |
258 |
|
259 |
int nx = dims[0]; |
260 |
int ny = dims[1]; |
261 |
int i = 0; |
262 |
int j = 0; |
263 |
int count_mask = 0; |
264 |
double sum = 0.0; |
265 |
double err = 0.0; |
266 |
*mean_derivative_btotal_ptr = 0.0; |
267 |
|
268 |
if (nx <= 0 || ny <= 0) return 1; |
269 |
|
270 |
/* brute force method of calculating the derivative (no consideration for edges) */ |
271 |
for (i = 1; i <= nx-2; i++) |
272 |
{ |
273 |
for (j = 0; j <= ny-1; j++) |
274 |
{ |
275 |
derx_bt[j * nx + i] = (bt[j * nx + i+1] - bt[j * nx + i-1])*0.5; |
276 |
err_termAt[j * nx + i] = (((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) ; |
277 |
} |
278 |
} |
279 |
|
280 |
/* brute force method of calculating the derivative (no consideration for edges) */ |
281 |
for (i = 0; i <= nx-1; i++) |
282 |
{ |
283 |
for (j = 1; j <= ny-2; j++) |
284 |
{ |
285 |
dery_bt[j * nx + i] = (bt[(j+1) * nx + i] - bt[(j-1) * nx + i])*0.5; |
286 |
err_termBt[j * nx + i] = (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) ; |
287 |
} |
288 |
} |
289 |
|
290 |
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
291 |
ignore the edges for the error terms as those arrays have been initialized to zero. |
292 |
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
293 |
i=0; |
294 |
for (j = 0; j <= ny-1; j++) |
295 |
{ |
296 |
derx_bt[j * nx + i] = ( (-3*bt[j * nx + i]) + (4*bt[j * nx + (i+1)]) - (bt[j * nx + (i+2)]) )*0.5; |
297 |
} |
298 |
|
299 |
i=nx-1; |
300 |
for (j = 0; j <= ny-1; j++) |
301 |
{ |
302 |
derx_bt[j * nx + i] = ( (3*bt[j * nx + i]) + (-4*bt[j * nx + (i-1)]) - (-bt[j * nx + (i-2)]) )*0.5; |
303 |
} |
304 |
|
305 |
j=0; |
306 |
for (i = 0; i <= nx-1; i++) |
307 |
{ |
308 |
dery_bt[j * nx + i] = ( (-3*bt[j*nx + i]) + (4*bt[(j+1) * nx + i]) - (bt[(j+2) * nx + i]) )*0.5; |
309 |
} |
310 |
|
311 |
j=ny-1; |
312 |
for (i = 0; i <= nx-1; i++) |
313 |
{ |
314 |
dery_bt[j * nx + i] = ( (3*bt[j * nx + i]) + (-4*bt[(j-1) * nx + i]) - (-bt[(j-2) * nx + i]) )*0.5; |
315 |
} |
316 |
|
317 |
// Calculate the sum only |
318 |
for (i = 1; i <= nx-2; i++) |
319 |
{ |
320 |
for (j = 1; j <= ny-2; j++) |
321 |
{ |
322 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
323 |
if ( (derx_bt[j * nx + i] + dery_bt[j * nx + i]) == 0) continue; |
324 |
if isnan(bt[j * nx + i]) continue; |
325 |
if isnan(bt[(j+1) * nx + i]) continue; |
326 |
if isnan(bt[(j-1) * nx + i]) continue; |
327 |
if isnan(bt[j * nx + i-1]) continue; |
328 |
if isnan(bt[j * nx + i+1]) continue; |
329 |
if isnan(bt_err[j * nx + i]) continue; |
330 |
if isnan(derx_bt[j * nx + i]) continue; |
331 |
if isnan(dery_bt[j * nx + i]) continue; |
332 |
sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ |
333 |
err += err_termBt[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ))+ |
334 |
err_termAt[j * nx + i] / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] )) ; |
335 |
count_mask++; |
336 |
} |
337 |
} |
338 |
|
339 |
*mean_derivative_btotal_ptr = (sum)/(count_mask); |
340 |
*mean_derivative_btotal_err_ptr = (sqrt(err))/(count_mask); |
341 |
//printf("MEANGBT=%f\n",*mean_derivative_btotal_ptr); |
342 |
//printf("MEANGBT_err=%f\n",*mean_derivative_btotal_err_ptr); |
343 |
|
344 |
return 0; |
345 |
} |
346 |
|
347 |
|
348 |
/*===========================================*/ |
349 |
/* Example function 6: Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */ |
350 |
|
351 |
int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh, float *err_termAh, float *err_termBh) |
352 |
{ |
353 |
|
354 |
int nx = dims[0]; |
355 |
int ny = dims[1]; |
356 |
int i = 0; |
357 |
int j = 0; |
358 |
int count_mask = 0; |
359 |
double sum= 0.0; |
360 |
double err =0.0; |
361 |
*mean_derivative_bh_ptr = 0.0; |
362 |
|
363 |
if (nx <= 0 || ny <= 0) return 1; |
364 |
|
365 |
/* brute force method of calculating the derivative (no consideration for edges) */ |
366 |
for (i = 1; i <= nx-2; i++) |
367 |
{ |
368 |
for (j = 0; j <= ny-1; j++) |
369 |
{ |
370 |
derx_bh[j * nx + i] = (bh[j * nx + i+1] - bh[j * nx + i-1])*0.5; |
371 |
err_termAh[j * nx + i] = (((bh[j * nx + (i+1)]-bh[j * nx + (i-1)])*(bh[j * nx + (i+1)]-bh[j * nx + (i-1)])) * (bh_err[j * nx + (i+1)]*bh_err[j * nx + (i+1)] + bh_err[j * nx + (i-1)]*bh_err[j * nx + (i-1)])); |
372 |
} |
373 |
} |
374 |
|
375 |
/* brute force method of calculating the derivative (no consideration for edges) */ |
376 |
for (i = 0; i <= nx-1; i++) |
377 |
{ |
378 |
for (j = 1; j <= ny-2; j++) |
379 |
{ |
380 |
dery_bh[j * nx + i] = (bh[(j+1) * nx + i] - bh[(j-1) * nx + i])*0.5; |
381 |
err_termBh[j * nx + i] = (((bh[ (j+1) * nx + i]-bh[(j-1) * nx + i])*(bh[(j+1) * nx + i]-bh[(j-1) * nx + i])) * (bh_err[(j+1) * nx + i]*bh_err[(j+1) * nx + i] + bh_err[(j-1) * nx + i]*bh_err[(j-1) * nx + i])); |
382 |
} |
383 |
} |
384 |
|
385 |
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
386 |
ignore the edges for the error terms as those arrays have been initialized to zero. |
387 |
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
388 |
i=0; |
389 |
for (j = 0; j <= ny-1; j++) |
390 |
{ |
391 |
derx_bh[j * nx + i] = ( (-3*bh[j * nx + i]) + (4*bh[j * nx + (i+1)]) - (bh[j * nx + (i+2)]) )*0.5; |
392 |
} |
393 |
|
394 |
i=nx-1; |
395 |
for (j = 0; j <= ny-1; j++) |
396 |
{ |
397 |
derx_bh[j * nx + i] = ( (3*bh[j * nx + i]) + (-4*bh[j * nx + (i-1)]) - (-bh[j * nx + (i-2)]) )*0.5; |
398 |
} |
399 |
|
400 |
j=0; |
401 |
for (i = 0; i <= nx-1; i++) |
402 |
{ |
403 |
dery_bh[j * nx + i] = ( (-3*bh[j*nx + i]) + (4*bh[(j+1) * nx + i]) - (bh[(j+2) * nx + i]) )*0.5; |
404 |
} |
405 |
|
406 |
j=ny-1; |
407 |
for (i = 0; i <= nx-1; i++) |
408 |
{ |
409 |
dery_bh[j * nx + i] = ( (3*bh[j * nx + i]) + (-4*bh[(j-1) * nx + i]) - (-bh[(j-2) * nx + i]) )*0.5; |
410 |
} |
411 |
|
412 |
|
413 |
for (i = 0; i <= nx-1; i++) |
414 |
{ |
415 |
for (j = 0; j <= ny-1; j++) |
416 |
{ |
417 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
418 |
if ( (derx_bh[j * nx + i] + dery_bh[j * nx + i]) == 0) continue; |
419 |
if isnan(bh[j * nx + i]) continue; |
420 |
if isnan(bh[(j+1) * nx + i]) continue; |
421 |
if isnan(bh[(j-1) * nx + i]) continue; |
422 |
if isnan(bh[j * nx + i-1]) continue; |
423 |
if isnan(bh[j * nx + i+1]) continue; |
424 |
if isnan(bh_err[j * nx + i]) continue; |
425 |
if isnan(derx_bh[j * nx + i]) continue; |
426 |
if isnan(dery_bh[j * nx + i]) continue; |
427 |
sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ |
428 |
err += err_termBh[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ))+ |
429 |
err_termAh[j * nx + i] / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] )) ; |
430 |
count_mask++; |
431 |
} |
432 |
} |
433 |
|
434 |
*mean_derivative_bh_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
435 |
*mean_derivative_bh_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
436 |
//printf("MEANGBH=%f\n",*mean_derivative_bh_ptr); |
437 |
//printf("MEANGBH_err=%f\n",*mean_derivative_bh_err_ptr); |
438 |
|
439 |
return 0; |
440 |
} |
441 |
|
442 |
/*===========================================*/ |
443 |
/* Example function 7: Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */ |
444 |
|
445 |
int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz, float *err_termA, float *err_termB) |
446 |
{ |
447 |
|
448 |
int nx = dims[0]; |
449 |
int ny = dims[1]; |
450 |
int i = 0; |
451 |
int j = 0; |
452 |
int count_mask = 0; |
453 |
double sum = 0.0; |
454 |
double err = 0.0; |
455 |
*mean_derivative_bz_ptr = 0.0; |
456 |
|
457 |
if (nx <= 0 || ny <= 0) return 1; |
458 |
|
459 |
/* brute force method of calculating the derivative (no consideration for edges) */ |
460 |
for (i = 1; i <= nx-2; i++) |
461 |
{ |
462 |
for (j = 0; j <= ny-1; j++) |
463 |
{ |
464 |
derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5; |
465 |
err_termA[j * nx + i] = (((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)])); |
466 |
} |
467 |
} |
468 |
|
469 |
/* brute force method of calculating the derivative (no consideration for edges) */ |
470 |
for (i = 0; i <= nx-1; i++) |
471 |
{ |
472 |
for (j = 1; j <= ny-2; j++) |
473 |
{ |
474 |
dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5; |
475 |
err_termB[j * nx + i] = (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i])); |
476 |
} |
477 |
} |
478 |
|
479 |
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
480 |
ignore the edges for the error terms as those arrays have been initialized to zero. |
481 |
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
482 |
i=0; |
483 |
for (j = 0; j <= ny-1; j++) |
484 |
{ |
485 |
derx_bz[j * nx + i] = ( (-3*bz[j * nx + i]) + (4*bz[j * nx + (i+1)]) - (bz[j * nx + (i+2)]) )*0.5; |
486 |
} |
487 |
|
488 |
i=nx-1; |
489 |
for (j = 0; j <= ny-1; j++) |
490 |
{ |
491 |
derx_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[j * nx + (i-1)]) - (-bz[j * nx + (i-2)]) )*0.5; |
492 |
} |
493 |
|
494 |
j=0; |
495 |
for (i = 0; i <= nx-1; i++) |
496 |
{ |
497 |
dery_bz[j * nx + i] = ( (-3*bz[j*nx + i]) + (4*bz[(j+1) * nx + i]) - (bz[(j+2) * nx + i]) )*0.5; |
498 |
} |
499 |
|
500 |
j=ny-1; |
501 |
for (i = 0; i <= nx-1; i++) |
502 |
{ |
503 |
dery_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[(j-1) * nx + i]) - (-bz[(j-2) * nx + i]) )*0.5; |
504 |
} |
505 |
|
506 |
|
507 |
for (i = 0; i <= nx-1; i++) |
508 |
{ |
509 |
for (j = 0; j <= ny-1; j++) |
510 |
{ |
511 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
512 |
if ( (derx_bz[j * nx + i] + dery_bz[j * nx + i]) == 0) continue; |
513 |
if isnan(bz[j * nx + i]) continue; |
514 |
if isnan(bz[(j+1) * nx + i]) continue; |
515 |
if isnan(bz[(j-1) * nx + i]) continue; |
516 |
if isnan(bz[j * nx + i-1]) continue; |
517 |
if isnan(bz[j * nx + i+1]) continue; |
518 |
if isnan(bz_err[j * nx + i]) continue; |
519 |
if isnan(derx_bz[j * nx + i]) continue; |
520 |
if isnan(dery_bz[j * nx + i]) continue; |
521 |
sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] ); /* Units of Gauss */ |
522 |
err += err_termB[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) + |
523 |
err_termA[j * nx + i] / (16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) ; |
524 |
count_mask++; |
525 |
} |
526 |
} |
527 |
|
528 |
*mean_derivative_bz_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
529 |
*mean_derivative_bz_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
530 |
//printf("MEANGBZ=%f\n",*mean_derivative_bz_ptr); |
531 |
//printf("MEANGBZ_err=%f\n",*mean_derivative_bz_err_ptr); |
532 |
|
533 |
return 0; |
534 |
} |
535 |
|
536 |
/*===========================================*/ |
537 |
/* Example function 8: Current Jz = (dBy/dx) - (dBx/dy) */ |
538 |
|
539 |
// In discretized space like data pixels, |
540 |
// the current (or curl of B) is calculated as |
541 |
// the integration of the field Bx and By along |
542 |
// the circumference of the data pixel divided by the area of the pixel. |
543 |
// One form of differencing (a word for the differential operator |
544 |
// in the discretized space) of the curl is expressed as |
545 |
// (dx * (Bx(i,j-1)+Bx(i,j)) / 2 |
546 |
// +dy * (By(i+1,j)+By(i,j)) / 2 |
547 |
// -dx * (Bx(i,j+1)+Bx(i,j)) / 2 |
548 |
// -dy * (By(i-1,j)+By(i,j)) / 2) / (dx * dy) |
549 |
// |
550 |
// |
551 |
// To change units from Gauss/pixel to mA/m^2 (the units for Jz in Leka and Barnes, 2003), |
552 |
// one must perform the following unit conversions: |
553 |
// (Gauss)(1/arcsec)(arcsec/meter)(Newton/Gauss*Ampere*meter)(Ampere^2/Newton)(milliAmpere/Ampere), or |
554 |
// (Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(1 T / 10^4 Gauss)(1 / 4*PI*10^-7)( 10^3 milliAmpere/Ampere), or |
555 |
// (Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(1000.), |
556 |
// where a Tesla is represented as a Newton/Ampere*meter. |
557 |
// |
558 |
// As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). |
559 |
// In that case, we would have the following: |
560 |
// (Gauss/pix)(1/0.5)(1/722500)(10^-4)(4*PI*10^7)(10^3), or |
561 |
// jz * (35.0) |
562 |
// |
563 |
// The units of total unsigned vertical current (us_i) are simply in A. In this case, we would have the following: |
564 |
// (Gauss/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(CDELT1)(CDELT1)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS) |
565 |
// = (Gauss/pix)(0.00010)(1/MUNAUGHT)(CDELT1)(RSUN_REF/RSUN_OBS) |
566 |
|
567 |
|
568 |
// Comment out random number generator, which can only run on solar3 |
569 |
// int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, |
570 |
// int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery, float *noisebx, |
571 |
// float *noiseby, float *noisebz) |
572 |
|
573 |
int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, |
574 |
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery, float *err_term1, float *err_term2) |
575 |
|
576 |
|
577 |
{ |
578 |
int nx = dims[0]; |
579 |
int ny = dims[1]; |
580 |
int i = 0; |
581 |
int j = 0; |
582 |
int count_mask = 0; |
583 |
|
584 |
if (nx <= 0 || ny <= 0) return 1; |
585 |
|
586 |
/* Calculate the derivative*/ |
587 |
/* brute force method of calculating the derivative (no consideration for edges) */ |
588 |
|
589 |
for (i = 1; i <= nx-2; i++) |
590 |
{ |
591 |
for (j = 0; j <= ny-1; j++) |
592 |
{ |
593 |
derx[j * nx + i] = (by[j * nx + i+1] - by[j * nx + i-1])*0.5; |
594 |
err_term1[j * nx + i] = (by_err[j * nx + i+1])*(by_err[j * nx + i+1]) + (by_err[j * nx + i-1])*(by_err[j * nx + i-1]); |
595 |
} |
596 |
} |
597 |
|
598 |
for (i = 0; i <= nx-1; i++) |
599 |
{ |
600 |
for (j = 1; j <= ny-2; j++) |
601 |
{ |
602 |
dery[j * nx + i] = (bx[(j+1) * nx + i] - bx[(j-1) * nx + i])*0.5; |
603 |
err_term2[j * nx + i] = (bx_err[(j+1) * nx + i])*(bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i])*(bx_err[(j-1) * nx + i]); |
604 |
} |
605 |
} |
606 |
|
607 |
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
608 |
ignore the edges for the error terms as those arrays have been initialized to zero. |
609 |
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
610 |
|
611 |
i=0; |
612 |
for (j = 0; j <= ny-1; j++) |
613 |
{ |
614 |
derx[j * nx + i] = ( (-3*by[j * nx + i]) + (4*by[j * nx + (i+1)]) - (by[j * nx + (i+2)]) )*0.5; |
615 |
} |
616 |
|
617 |
i=nx-1; |
618 |
for (j = 0; j <= ny-1; j++) |
619 |
{ |
620 |
derx[j * nx + i] = ( (3*by[j * nx + i]) + (-4*by[j * nx + (i-1)]) - (-by[j * nx + (i-2)]) )*0.5; |
621 |
} |
622 |
|
623 |
j=0; |
624 |
for (i = 0; i <= nx-1; i++) |
625 |
{ |
626 |
dery[j * nx + i] = ( (-3*bx[j*nx + i]) + (4*bx[(j+1) * nx + i]) - (bx[(j+2) * nx + i]) )*0.5; |
627 |
} |
628 |
|
629 |
j=ny-1; |
630 |
for (i = 0; i <= nx-1; i++) |
631 |
{ |
632 |
dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5; |
633 |
} |
634 |
|
635 |
|
636 |
for (i = 0; i <= nx-1; i++) |
637 |
{ |
638 |
for (j = 0; j <= ny-1; j++) |
639 |
{ |
640 |
// calculate jz at all points |
641 |
jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); // jz is in units of Gauss/pix |
642 |
jz_err[j * nx + i] = 0.5*sqrt( err_term1[j * nx + i] + err_term2[j * nx + i] ) ; |
643 |
jz_err_squared[j * nx + i]= (jz_err[j * nx + i]*jz_err[j * nx + i]); |
644 |
count_mask++; |
645 |
} |
646 |
} |
647 |
return 0; |
648 |
} |
649 |
|
650 |
/*===========================================*/ |
651 |
|
652 |
/* Example function 9: Compute quantities on Jz array */ |
653 |
// Compute mean and total current on Jz array. |
654 |
|
655 |
int computeJzsmooth(float *bx, float *by, int *dims, float *jz, float *jz_smooth, float *jz_err, float *jz_rms_err, float *jz_err_squared_smooth, |
656 |
float *mean_jz_ptr, float *mean_jz_err_ptr, float *us_i_ptr, float *us_i_err_ptr, int *mask, int *bitmask, |
657 |
float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) |
658 |
|
659 |
{ |
660 |
|
661 |
int nx = dims[0]; |
662 |
int ny = dims[1]; |
663 |
int i = 0; |
664 |
int j = 0; |
665 |
int count_mask = 0; |
666 |
double curl = 0.0; |
667 |
double us_i = 0.0; |
668 |
double err = 0.0; |
669 |
|
670 |
if (nx <= 0 || ny <= 0) return 1; |
671 |
|
672 |
/* At this point, use the smoothed Jz array with a Gaussian (FWHM of 4 pix and truncation width of 12 pixels) but keep the original array dimensions*/ |
673 |
for (i = 0; i <= nx-1; i++) |
674 |
{ |
675 |
for (j = 0; j <= ny-1; j++) |
676 |
{ |
677 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
678 |
if isnan(derx[j * nx + i]) continue; |
679 |
if isnan(dery[j * nx + i]) continue; |
680 |
if isnan(jz[j * nx + i]) continue; |
681 |
curl += (jz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */ |
682 |
us_i += fabs(jz[j * nx + i])*(cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT); /* us_i is in units of A */ |
683 |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]); |
684 |
count_mask++; |
685 |
} |
686 |
} |
687 |
|
688 |
/* Calculate mean vertical current density (mean_jz) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */ |
689 |
*mean_jz_ptr = curl/(count_mask); /* mean_jz gets populated as MEANJZD */ |
690 |
*mean_jz_err_ptr = (sqrt(err)/count_mask)*((1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.)); // error in the quantity MEANJZD |
691 |
|
692 |
*us_i_ptr = (us_i); /* us_i gets populated as TOTUSJZ */ |
693 |
*us_i_err_ptr = (sqrt(err))*((cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT)); // error in the quantity TOTUSJZ |
694 |
|
695 |
//printf("MEANJZD=%f\n",*mean_jz_ptr); |
696 |
//printf("MEANJZD_err=%f\n",*mean_jz_err_ptr); |
697 |
|
698 |
//printf("TOTUSJZ=%g\n",*us_i_ptr); |
699 |
//printf("TOTUSJZ_err=%g\n",*us_i_err_ptr); |
700 |
|
701 |
return 0; |
702 |
|
703 |
} |
704 |
|
705 |
/*===========================================*/ |
706 |
|
707 |
/* Example function 10: Twist Parameter, alpha */ |
708 |
|
709 |
// The twist parameter, alpha, is defined as alpha = Jz/Bz. In this case, the calculation |
710 |
// for alpha is weighted by Bz (following Hagino et al., http://adsabs.harvard.edu/abs/2004PASJ...56..831H): |
711 |
|
712 |
// numerator = sum of all Jz*Bz |
713 |
// denominator = sum of Bz*Bz |
714 |
// alpha = numerator/denominator |
715 |
|
716 |
// The units of alpha are in 1/Mm |
717 |
// The units of Jz are in Gauss/pix; the units of Bz are in Gauss. |
718 |
// |
719 |
// Therefore, the units of Jz/Bz = (Gauss/pix)(1/Gauss)(pix/arcsec)(arsec/meter)(meter/Mm), or |
720 |
// = (Gauss/pix)(1/Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(10^6) |
721 |
// = 1/Mm |
722 |
|
723 |
int computeAlpha(float *jz_err, float *bz_err, float *bz, int *dims, float *jz, float *jz_smooth, float *mean_alpha_ptr, float *mean_alpha_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
724 |
|
725 |
{ |
726 |
int nx = dims[0]; |
727 |
int ny = dims[1]; |
728 |
int i = 0; |
729 |
int j = 0; |
730 |
double alpha_total = 0.0; |
731 |
double C = ((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)); |
732 |
double total = 0.0; |
733 |
double A = 0.0; |
734 |
double B = 0.0; |
735 |
|
736 |
if (nx <= 0 || ny <= 0) return 1; |
737 |
for (i = 1; i < nx-1; i++) |
738 |
{ |
739 |
for (j = 1; j < ny-1; j++) |
740 |
{ |
741 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
742 |
if isnan(jz[j * nx + i]) continue; |
743 |
if isnan(bz[j * nx + i]) continue; |
744 |
if (jz[j * nx + i] == 0.0) continue; |
745 |
if (bz[j * nx + i] == 0.0) continue; |
746 |
A += jz[j*nx+i]*bz[j*nx+i]; |
747 |
B += bz[j*nx+i]*bz[j*nx+i]; |
748 |
} |
749 |
} |
750 |
|
751 |
for (i = 1; i < nx-1; i++) |
752 |
{ |
753 |
for (j = 1; j < ny-1; j++) |
754 |
{ |
755 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
756 |
if isnan(jz[j * nx + i]) continue; |
757 |
if isnan(bz[j * nx + i]) continue; |
758 |
if (jz[j * nx + i] == 0.0) continue; |
759 |
if (bz[j * nx + i] == 0.0) continue; |
760 |
total += bz[j*nx+i]*bz[j*nx+i]*jz_err[j*nx+i]*jz_err[j*nx+i] + (jz[j*nx+i]-2*bz[j*nx+i]*A/B)*(jz[j*nx+i]-2*bz[j*nx+i]*A/B)*bz_err[j*nx+i]*bz_err[j*nx+i]; |
761 |
} |
762 |
} |
763 |
|
764 |
/* Determine the absolute value of alpha. The units for alpha are 1/Mm */ |
765 |
alpha_total = ((A/B)*C); |
766 |
*mean_alpha_ptr = alpha_total; |
767 |
*mean_alpha_err_ptr = (C/B)*(sqrt(total)); |
768 |
|
769 |
return 0; |
770 |
} |
771 |
|
772 |
/*===========================================*/ |
773 |
/* Example function 11: Helicity (mean current helicty, total unsigned current helicity, absolute value of net current helicity) */ |
774 |
|
775 |
// The current helicity is defined as Bz*Jz and the units are G^2 / m |
776 |
// The units of Jz are in G/pix; the units of Bz are in G. |
777 |
// Therefore, the units of Bz*Jz = (Gauss)*(Gauss/pix) = (Gauss^2/pix)(pix/arcsec)(arcsec/meter) |
778 |
// = (Gauss^2/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF) |
779 |
// = G^2 / m. |
780 |
|
781 |
int computeHelicity(float *jz_err, float *jz_rms_err, float *bz_err, float *bz, int *dims, float *jz, float *mean_ih_ptr, |
782 |
float *mean_ih_err_ptr, float *total_us_ih_ptr, float *total_abs_ih_ptr, |
783 |
float *total_us_ih_err_ptr, float *total_abs_ih_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
784 |
|
785 |
{ |
786 |
|
787 |
int nx = dims[0]; |
788 |
int ny = dims[1]; |
789 |
int i = 0; |
790 |
int j = 0; |
791 |
int count_mask = 0; |
792 |
double sum = 0.0; |
793 |
double sum2 = 0.0; |
794 |
double err = 0.0; |
795 |
|
796 |
if (nx <= 0 || ny <= 0) return 1; |
797 |
|
798 |
for (i = 0; i < nx; i++) |
799 |
{ |
800 |
for (j = 0; j < ny; j++) |
801 |
{ |
802 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
803 |
if isnan(jz[j * nx + i]) continue; |
804 |
if isnan(bz[j * nx + i]) continue; |
805 |
if isnan(jz_err[j * nx + i]) continue; |
806 |
if isnan(bz_err[j * nx + i]) continue; |
807 |
if (bz[j * nx + i] == 0.0) continue; |
808 |
if (jz[j * nx + i] == 0.0) continue; |
809 |
sum += (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to MEANJZH and ABSNJZH |
810 |
sum2 += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to TOTUSJH |
811 |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]*bz[j * nx + i]*bz[j * nx + i]) + (bz_err[j * nx + i]*bz_err[j * nx + i]*jz[j * nx + i]*jz[j * nx + i]); |
812 |
count_mask++; |
813 |
} |
814 |
} |
815 |
|
816 |
*mean_ih_ptr = sum/count_mask ; /* Units are G^2 / m ; keyword is MEANJZH */ |
817 |
*total_us_ih_ptr = sum2 ; /* Units are G^2 / m ; keyword is TOTUSJH */ |
818 |
*total_abs_ih_ptr = fabs(sum) ; /* Units are G^2 / m ; keyword is ABSNJZH */ |
819 |
|
820 |
*mean_ih_err_ptr = (sqrt(err)/count_mask)*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity MEANJZH |
821 |
*total_us_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity TOTUSJH |
822 |
*total_abs_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity ABSNJZH |
823 |
|
824 |
//printf("MEANJZH=%f\n",*mean_ih_ptr); |
825 |
//printf("MEANJZH_err=%f\n",*mean_ih_err_ptr); |
826 |
|
827 |
//printf("TOTUSJH=%f\n",*total_us_ih_ptr); |
828 |
//printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr); |
829 |
|
830 |
//printf("ABSNJZH=%f\n",*total_abs_ih_ptr); |
831 |
//printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr); |
832 |
|
833 |
return 0; |
834 |
} |
835 |
|
836 |
/*===========================================*/ |
837 |
/* Example function 12: Sum of Absolute Value per polarity */ |
838 |
|
839 |
// The Sum of the Absolute Value per polarity is defined as the following: |
840 |
// fabs(sum(jz gt 0)) + fabs(sum(jz lt 0)) and the units are in Amperes per square arcsecond. |
841 |
// The units of jz are in G/pix. In this case, we would have the following: |
842 |
// Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF), |
843 |
// = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS) |
844 |
// |
845 |
// The error in this quantity is the same as the error in the mean vertical current (mean_jz_err). |
846 |
|
847 |
int computeSumAbsPerPolarity(float *jz_err, float *bz_err, float *bz, float *jz, int *dims, float *totaljzptr, float *totaljz_err_ptr, |
848 |
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
849 |
|
850 |
{ |
851 |
int nx = dims[0]; |
852 |
int ny = dims[1]; |
853 |
int i=0; |
854 |
int j=0; |
855 |
int count_mask=0; |
856 |
double sum1=0.0; |
857 |
double sum2=0.0; |
858 |
double err=0.0; |
859 |
*totaljzptr=0.0; |
860 |
|
861 |
if (nx <= 0 || ny <= 0) return 1; |
862 |
|
863 |
for (i = 0; i < nx; i++) |
864 |
{ |
865 |
for (j = 0; j < ny; j++) |
866 |
{ |
867 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
868 |
if isnan(bz[j * nx + i]) continue; |
869 |
if isnan(jz[j * nx + i]) continue; |
870 |
if (bz[j * nx + i] > 0) sum1 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
871 |
if (bz[j * nx + i] <= 0) sum2 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
872 |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]); |
873 |
count_mask++; |
874 |
} |
875 |
} |
876 |
|
877 |
*totaljzptr = fabs(sum1) + fabs(sum2); /* Units are Amperes per arcsecond */ |
878 |
*totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs)); |
879 |
//printf("SAVNCPP=%g\n",*totaljzptr); |
880 |
//printf("SAVNCPP_err=%g\n",*totaljz_err_ptr); |
881 |
|
882 |
return 0; |
883 |
} |
884 |
|
885 |
/*===========================================*/ |
886 |
/* Example function 13: Mean photospheric excess magnetic energy and total photospheric excess magnetic energy density */ |
887 |
// The units for magnetic energy density in cgs are ergs per cubic centimeter. The formula B^2/8*PI integrated over all space, dV |
888 |
// automatically yields erg per cubic centimeter for an input B in Gauss. Note that the 8*PI can come out of the integral; thus, |
889 |
// the integral is over B^2 dV and the 8*PI is divided at the end. |
890 |
// |
891 |
// Total magnetic energy is the magnetic energy density times dA, or the area, and the units are thus ergs/cm. To convert |
892 |
// ergs per centimeter cubed to ergs per centimeter, simply multiply by the area per pixel in cm: |
893 |
// erg/cm^3*(CDELT1^2)*(RSUN_REF/RSUN_OBS ^2)*(100.^2) |
894 |
// = erg/cm^3*(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2 |
895 |
// = erg/cm^3*(1.30501e15) |
896 |
// = erg/cm(1/pix^2) |
897 |
|
898 |
int computeFreeEnergy(float *bx_err, float *by_err, float *bx, float *by, float *bpx, float *bpy, int *dims, |
899 |
float *meanpotptr, float *meanpot_err_ptr, float *totpotptr, float *totpot_err_ptr, int *mask, int *bitmask, |
900 |
float cdelt1, double rsun_ref, double rsun_obs) |
901 |
|
902 |
{ |
903 |
int nx = dims[0]; |
904 |
int ny = dims[1]; |
905 |
int i = 0; |
906 |
int j = 0; |
907 |
int count_mask = 0; |
908 |
double sum = 0.0; |
909 |
double sum1 = 0.0; |
910 |
double err = 0.0; |
911 |
*totpotptr = 0.0; |
912 |
*meanpotptr = 0.0; |
913 |
|
914 |
if (nx <= 0 || ny <= 0) return 1; |
915 |
|
916 |
for (i = 0; i < nx; i++) |
917 |
{ |
918 |
for (j = 0; j < ny; j++) |
919 |
{ |
920 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
921 |
if isnan(bx[j * nx + i]) continue; |
922 |
if isnan(by[j * nx + i]) continue; |
923 |
sum += ( ((bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])) + ((by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])) )*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); |
924 |
sum1 += ( ((bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])) + ((by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])) ); |
925 |
err += 4.0*(bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])*(bx_err[j * nx + i]*bx_err[j * nx + i]) + |
926 |
4.0*(by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])*(by_err[j * nx + i]*by_err[j * nx + i]); |
927 |
count_mask++; |
928 |
} |
929 |
} |
930 |
|
931 |
/* Units of meanpotptr are ergs per centimeter */ |
932 |
*meanpotptr = (sum1) / (count_mask*8.*PI) ; /* Units are ergs per cubic centimeter */ |
933 |
*meanpot_err_ptr = (sqrt(err)) / (count_mask*8.*PI); // error in the quantity (sum)/(count_mask) |
934 |
|
935 |
/* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2; therefore, units of totpotptr are ergs per centimeter */ |
936 |
*totpotptr = (sum)/(8.*PI); |
937 |
*totpot_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0*(1/(8.*PI))); |
938 |
|
939 |
//printf("MEANPOT=%g\n",*meanpotptr); |
940 |
//printf("MEANPOT_err=%g\n",*meanpot_err_ptr); |
941 |
|
942 |
//printf("TOTPOT=%g\n",*totpotptr); |
943 |
//printf("TOTPOT_err=%g\n",*totpot_err_ptr); |
944 |
|
945 |
return 0; |
946 |
} |
947 |
|
948 |
/*===========================================*/ |
949 |
/* Example function 14: Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */ |
950 |
|
951 |
int computeShearAngle(float *bx_err, float *by_err, float *bz_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, |
952 |
float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask) |
953 |
|
954 |
|
955 |
{ |
956 |
int nx = dims[0]; |
957 |
int ny = dims[1]; |
958 |
int i = 0; |
959 |
int j = 0; |
960 |
float count_mask = 0; |
961 |
float count = 0; |
962 |
double dotproduct = 0.0; |
963 |
double magnitude_potential = 0.0; |
964 |
double magnitude_vector = 0.0; |
965 |
double shear_angle = 0.0; |
966 |
double denominator = 0.0; |
967 |
double term1 = 0.0; |
968 |
double term2 = 0.0; |
969 |
double term3 = 0.0; |
970 |
double sumsum = 0.0; |
971 |
double err = 0.0; |
972 |
double part1 = 0.0; |
973 |
double part2 = 0.0; |
974 |
double part3 = 0.0; |
975 |
*area_w_shear_gt_45ptr = 0.0; |
976 |
*meanshear_angleptr = 0.0; |
977 |
|
978 |
if (nx <= 0 || ny <= 0) return 1; |
979 |
|
980 |
for (i = 0; i < nx; i++) |
981 |
{ |
982 |
for (j = 0; j < ny; j++) |
983 |
{ |
984 |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
985 |
if isnan(bpx[j * nx + i]) continue; |
986 |
if isnan(bpy[j * nx + i]) continue; |
987 |
if isnan(bpz[j * nx + i]) continue; |
988 |
if isnan(bz[j * nx + i]) continue; |
989 |
if isnan(bx[j * nx + i]) continue; |
990 |
if isnan(by[j * nx + i]) continue; |
991 |
if isnan(bx_err[j * nx + i]) continue; |
992 |
if isnan(by_err[j * nx + i]) continue; |
993 |
if isnan(bz_err[j * nx + i]) continue; |
994 |
|
995 |
/* For mean 3D shear angle, percentage with shear greater than 45*/ |
996 |
dotproduct = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]); |
997 |
magnitude_potential = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i])); |
998 |
magnitude_vector = sqrt( (bx[j * nx + i]*bx[j * nx + i]) + (by[j * nx + i]*by[j * nx + i]) + (bz[j * nx + i]*bz[j * nx + i]) ); |
999 |
//printf("dotproduct=%f\n",dotproduct); |
1000 |
//printf("magnitude_potential=%f\n",magnitude_potential); |
1001 |
//printf("magnitude_vector=%f\n",magnitude_vector); |
1002 |
|
1003 |
shear_angle = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI); |
1004 |
sumsum += shear_angle; |
1005 |
//printf("shear_angle=%f\n",shear_angle); |
1006 |
count ++; |
1007 |
|
1008 |
if (shear_angle > 45) count_mask ++; |
1009 |
|
1010 |
// For the error analysis |
1011 |
|
1012 |
term1 = bx[j * nx + i]*by[j * nx + i]*bpy[j * nx + i] - by[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bz[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bz[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i]; |
1013 |
term2 = bx[j * nx + i]*bx[j * nx + i]*bpy[j * nx + i] - bx[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bx[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i] - bz[j * nx + i]*by[j * nx + i]*bpz[j * nx + i]; |
1014 |
term3 = bx[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bx[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*by[j * nx + i]*bpz[j * nx + i] - by[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i]; |
1015 |
|
1016 |
part1 = bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]; |
1017 |
part2 = bpx[j * nx + i]*bpx[j * nx + i] + bpy[j * nx + i]*bpy[j * nx + i] + bpz[j * nx + i]*bpz[j * nx + i]; |
1018 |
part3 = bx[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*bpy[j * nx + i] + bz[j * nx + i]*bpz[j * nx + i]; |
1019 |
|
1020 |
// denominator is squared |
1021 |
denominator = part1*part1*part1*part2*(1.0-((part3*part3)/(part1*part2))); |
1022 |
|
1023 |
err = (term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) + |
1024 |
(term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) + |
1025 |
(term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) ; |
1026 |
|
1027 |
} |
1028 |
} |
1029 |
/* For mean 3D shear angle, area with shear greater than 45*/ |
1030 |
*meanshear_angleptr = (sumsum)/(count); /* Units are degrees */ |
1031 |
|
1032 |
// For the error in the mean 3D shear angle: |
1033 |
// If count_mask is 0, then we run into a divide by zero error. In this case, set *meanshear_angle_err_ptr to NAN |
1034 |
// If count_mask is greater than zero, then compute the error. |
1035 |
if (count_mask == 0) |
1036 |
*meanshear_angle_err_ptr = NAN; |
1037 |
else |
1038 |
*meanshear_angle_err_ptr = (sqrt(err)/count_mask)*(180./PI); |
1039 |
|
1040 |
/* The area here is a fractional area -- the % of the total area. This has no error associated with it. */ |
1041 |
*area_w_shear_gt_45ptr = (count_mask/(count))*(100.0); |
1042 |
|
1043 |
//printf("MEANSHR=%f\n",*meanshear_angleptr); |
1044 |
//printf("ERRMSHA=%f\n",*meanshear_angle_err_ptr); |
1045 |
//printf("SHRGT45=%f\n",*area_w_shear_gt_45ptr); |
1046 |
return 0; |
1047 |
} |
1048 |
|
1049 |
/*===========================================*/ |
1050 |
/* Example function 15: R parameter as defined in Schrijver, 2007 */ |
1051 |
// |
1052 |
// Note that there is a restriction on the function fsample() |
1053 |
// If the following occurs: |
1054 |
// nx_out > floor((ny_in-1)/scale + 1) |
1055 |
// ny_out > floor((ny_in-1)/scale + 1), |
1056 |
// where n*_out are the dimensions of the output array and n*_in |
1057 |
// are the dimensions of the input array, fsample() will usually result |
1058 |
// in a segfault (though not always, depending on how the segfault was accessed.) |
1059 |
|
1060 |
int computeR(float *bz_err, float *los, int *dims, float *Rparam, float cdelt1, |
1061 |
float *rim, float *p1p0, float *p1n0, float *p1p, float *p1n, float *p1, |
1062 |
float *pmap, int nx1, int ny1, |
1063 |
int scale, float *p1pad, int nxp, int nyp, float *pmapn) |
1064 |
|
1065 |
{ |
1066 |
int nx = dims[0]; |
1067 |
int ny = dims[1]; |
1068 |
int i = 0; |
1069 |
int j = 0; |
1070 |
int index, index1; |
1071 |
double sum = 0.0; |
1072 |
double err = 0.0; |
1073 |
*Rparam = 0.0; |
1074 |
struct fresize_struct fresboxcar, fresgauss; |
1075 |
struct fint_struct fints; |
1076 |
float sigma = 10.0/2.3548; |
1077 |
|
1078 |
// set up convolution kernels |
1079 |
init_fresize_boxcar(&fresboxcar,1,1); |
1080 |
init_fresize_gaussian(&fresgauss,sigma,20,1); |
1081 |
|
1082 |
// =============== [STEP 1] =============== |
1083 |
// bin the line-of-sight magnetogram down by a factor of scale |
1084 |
fsample(los, rim, nx, ny, nx, nx1, ny1, nx1, scale, 0, 0, 0.0); |
1085 |
|
1086 |
// =============== [STEP 2] =============== |
1087 |
// identify positive and negative pixels greater than +/- 150 gauss |
1088 |
// and label those pixels with a 1.0 in arrays p1p0 and p1n0 |
1089 |
for (i = 0; i < nx1; i++) |
1090 |
{ |
1091 |
for (j = 0; j < ny1; j++) |
1092 |
{ |
1093 |
index = j * nx1 + i; |
1094 |
if (rim[index] > 150) |
1095 |
p1p0[index]=1.0; |
1096 |
else |
1097 |
p1p0[index]=0.0; |
1098 |
if (rim[index] < -150) |
1099 |
p1n0[index]=1.0; |
1100 |
else |
1101 |
p1n0[index]=0.0; |
1102 |
} |
1103 |
} |
1104 |
|
1105 |
// =============== [STEP 3] =============== |
1106 |
// smooth each of the negative and positive pixel bitmaps |
1107 |
fresize(&fresboxcar, p1p0, p1p, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); |
1108 |
fresize(&fresboxcar, p1n0, p1n, nx1, ny1, nx1, nx1, ny1, nx1, 0, 0, 0.0); |
1109 |
|
1110 |
// =============== [STEP 4] =============== |
1111 |
// find the pixels for which p1p and p1n are both equal to 1. |
1112 |
// this defines the polarity inversion line |
1113 |
for (i = 0; i < nx1; i++) |
1114 |
{ |
1115 |
for (j = 0; j < ny1; j++) |
1116 |
{ |
1117 |
index = j * nx1 + i; |
1118 |
if ((p1p[index] > 0.0) && (p1n[index] > 0.0)) |
1119 |
p1[index]=1.0; |
1120 |
else |
1121 |
p1[index]=0.0; |
1122 |
} |
1123 |
} |
1124 |
|
1125 |
// pad p1 with zeroes so that the gaussian colvolution in step 5 |
1126 |
// does not cut off data within hwidth of the edge |
1127 |
|
1128 |
// step i: zero p1pad |
1129 |
for (i = 0; i < nxp; i++) |
1130 |
{ |
1131 |
for (j = 0; j < nyp; j++) |
1132 |
{ |
1133 |
index = j * nxp + i; |
1134 |
p1pad[index]=0.0; |
1135 |
} |
1136 |
} |
1137 |
|
1138 |
// step ii: place p1 at the center of p1pad |
1139 |
for (i = 0; i < nx1; i++) |
1140 |
{ |
1141 |
for (j = 0; j < ny1; j++) |
1142 |
{ |
1143 |
index = j * nx1 + i; |
1144 |
index1 = (j+20) * nxp + (i+20); |
1145 |
p1pad[index1]=p1[index]; |
1146 |
} |
1147 |
} |
1148 |
|
1149 |
// =============== [STEP 5] =============== |
1150 |
// convolve the polarity inversion line map with a gaussian |
1151 |
// to identify the region near the plarity inversion line |
1152 |
// the resultant array is called pmap |
1153 |
fresize(&fresgauss, p1pad, pmap, nxp, nyp, nxp, nxp, nyp, nxp, 0, 0, 0.0); |
1154 |
|
1155 |
|
1156 |
// select out the nx1 x ny1 non-padded array within pmap |
1157 |
for (i = 0; i < nx1; i++) |
1158 |
{ |
1159 |
for (j = 0; j < ny1; j++) |
1160 |
{ |
1161 |
index = j * nx1 + i; |
1162 |
index1 = (j+20) * nxp + (i+20); |
1163 |
pmapn[index]=pmap[index1]; |
1164 |
} |
1165 |
} |
1166 |
|
1167 |
// =============== [STEP 6] =============== |
1168 |
// the R parameter is calculated |
1169 |
for (i = 0; i < nx1; i++) |
1170 |
{ |
1171 |
for (j = 0; j < ny1; j++) |
1172 |
{ |
1173 |
index = j * nx1 + i; |
1174 |
if isnan(pmapn[index]) continue; |
1175 |
if isnan(rim[index]) continue; |
1176 |
sum += pmapn[index]*abs(rim[index]); |
1177 |
} |
1178 |
} |
1179 |
|
1180 |
if (sum < 1.0) |
1181 |
*Rparam = 0.0; |
1182 |
else |
1183 |
*Rparam = log10(sum); |
1184 |
|
1185 |
//printf("R_VALUE=%f\n",*Rparam); |
1186 |
|
1187 |
free_fresize(&fresboxcar); |
1188 |
free_fresize(&fresgauss); |
1189 |
|
1190 |
return 0; |
1191 |
|
1192 |
} |
1193 |
|
1194 |
/*===========================================*/ |
1195 |
/* Example function 16: Lorentz force as defined in Fisher, 2012 */ |
1196 |
// |
1197 |
// This calculation is adapted from Xudong's code |
1198 |
// at /proj/cgem/lorentz/apps/lorentz.c |
1199 |
|
1200 |
int computeLorentz(float *bx, float *by, float *bz, float *fx, float *fy, float *fz, int *dims, |
1201 |
float *totfx_ptr, float *totfy_ptr, float *totfz_ptr, float *totbsq_ptr, |
1202 |
float *epsx_ptr, float *epsy_ptr, float *epsz_ptr, int *mask, int *bitmask, |
1203 |
float cdelt1, double rsun_ref, double rsun_obs) |
1204 |
|
1205 |
{ |
1206 |
|
1207 |
int nx = dims[0]; |
1208 |
int ny = dims[1]; |
1209 |
int nxny = nx*ny; |
1210 |
int j = 0; |
1211 |
int index; |
1212 |
double totfx = 0, totfy = 0, totfz = 0; |
1213 |
double bsq = 0, totbsq = 0; |
1214 |
double epsx = 0, epsy = 0, epsz = 0; |
1215 |
double area = cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
1216 |
double k_h = -1.0 * area / (4. * PI) / 1.0e20; |
1217 |
double k_z = area / (8. * PI) / 1.0e20; |
1218 |
|
1219 |
if (nx <= 0 || ny <= 0) return 1; |
1220 |
|
1221 |
for (int i = 0; i < nxny; i++) |
1222 |
{ |
1223 |
if ( mask[i] < 70 || bitmask[i] < 30 ) continue; |
1224 |
if isnan(bx[i]) continue; |
1225 |
if isnan(by[i]) continue; |
1226 |
if isnan(bz[i]) continue; |
1227 |
fx[i] = bx[i] * bz[i] * k_h; |
1228 |
fy[i] = by[i] * bz[i] * k_h; |
1229 |
fz[i] = (bx[i] * bx[i] + by[i] * by[i] - bz[i] * bz[i]) * k_z; |
1230 |
bsq = bx[i] * bx[i] + by[i] * by[i] + bz[i] * bz[i]; |
1231 |
totfx += fx[i]; totfy += fy[i]; totfz += fz[i]; |
1232 |
totbsq += bsq; |
1233 |
} |
1234 |
|
1235 |
*totfx_ptr = totfx; |
1236 |
*totfy_ptr = totfy; |
1237 |
*totfz_ptr = totfz; |
1238 |
*totbsq_ptr = totbsq; |
1239 |
*epsx_ptr = (totfx / k_h) / totbsq; |
1240 |
*epsy_ptr = (totfy / k_h) / totbsq; |
1241 |
*epsz_ptr = (totfz / k_z) / totbsq; |
1242 |
|
1243 |
//printf("TOTBSQ=%f\n",*totbsq_ptr); |
1244 |
|
1245 |
return 0; |
1246 |
|
1247 |
} |
1248 |
|
1249 |
/*===========================================*/ |
1250 |
|
1251 |
/* Example function 17: Compute total unsigned flux in units of G/cm^2 on the LOS field */ |
1252 |
|
1253 |
// To compute the unsigned flux, we simply calculate |
1254 |
// flux = surface integral [(vector LOS) dot (normal vector)], |
1255 |
// = surface integral [(magnitude LOS)*(magnitude normal)*(cos theta)]. |
1256 |
// However, since the field is radial, we will assume cos theta = 1. |
1257 |
// Therefore the pixels only need to be corrected for the projection. |
1258 |
|
1259 |
// To convert G to G*cm^2, simply multiply by the number of square centimeters per pixel. |
1260 |
// As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). |
1261 |
// (Gauss/pix^2)(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.cm/m)^2 |
1262 |
// =Gauss*cm^2 |
1263 |
|
1264 |
int computeAbsFlux_los(float *los, int *dims, float *absFlux_los, |
1265 |
float *mean_vf_los_ptr, float *count_mask_los_ptr, |
1266 |
int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
1267 |
|
1268 |
{ |
1269 |
|
1270 |
int nx = dims[0]; |
1271 |
int ny = dims[1]; |
1272 |
int i = 0; |
1273 |
int j = 0; |
1274 |
int count_mask_los = 0; |
1275 |
double sum = 0.0; |
1276 |
*absFlux_los = 0.0; |
1277 |
*mean_vf_los_ptr = 0.0; |
1278 |
|
1279 |
|
1280 |
if (nx <= 0 || ny <= 0) return 1; |
1281 |
|
1282 |
for (i = 0; i < nx; i++) |
1283 |
{ |
1284 |
for (j = 0; j < ny; j++) |
1285 |
{ |
1286 |
if ( bitmask[j * nx + i] < 30 ) continue; |
1287 |
if isnan(los[j * nx + i]) continue; |
1288 |
sum += (fabs(los[j * nx + i])); |
1289 |
count_mask_los++; |
1290 |
} |
1291 |
} |
1292 |
|
1293 |
*mean_vf_los_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
1294 |
*count_mask_los_ptr = count_mask_los; |
1295 |
|
1296 |
//printf("USFLUXL=%f\n",*mean_vf_los_ptr); |
1297 |
//printf("CMASKL=%f\n",*count_mask_los_ptr); |
1298 |
|
1299 |
return 0; |
1300 |
} |
1301 |
|
1302 |
/*===========================================*/ |
1303 |
/* Example function 18: Derivative of B_LOS (approximately B_vertical) = SQRT( ( dLOS/dx )^2 + ( dLOS/dy )^2 ) */ |
1304 |
|
1305 |
int computeLOSderivative(float *los, int *dims, float *mean_derivative_los_ptr, int *bitmask, float *derx_los, float *dery_los) |
1306 |
{ |
1307 |
|
1308 |
int nx = dims[0]; |
1309 |
int ny = dims[1]; |
1310 |
int i = 0; |
1311 |
int j = 0; |
1312 |
int count_mask = 0; |
1313 |
double sum = 0.0; |
1314 |
*mean_derivative_los_ptr = 0.0; |
1315 |
|
1316 |
if (nx <= 0 || ny <= 0) return 1; |
1317 |
|
1318 |
/* brute force method of calculating the derivative (no consideration for edges) */ |
1319 |
for (i = 1; i <= nx-2; i++) |
1320 |
{ |
1321 |
for (j = 0; j <= ny-1; j++) |
1322 |
{ |
1323 |
derx_los[j * nx + i] = (los[j * nx + i+1] - los[j * nx + i-1])*0.5; |
1324 |
} |
1325 |
} |
1326 |
|
1327 |
/* brute force method of calculating the derivative (no consideration for edges) */ |
1328 |
for (i = 0; i <= nx-1; i++) |
1329 |
{ |
1330 |
for (j = 1; j <= ny-2; j++) |
1331 |
{ |
1332 |
dery_los[j * nx + i] = (los[(j+1) * nx + i] - los[(j-1) * nx + i])*0.5; |
1333 |
} |
1334 |
} |
1335 |
|
1336 |
/* consider the edges for the arrays that contribute to the variable "sum" in the computation below. |
1337 |
ignore the edges for the error terms as those arrays have been initialized to zero. |
1338 |
this is okay because the error term will ultimately not include the edge pixels as they are selected out by the mask and bitmask arrays.*/ |
1339 |
i=0; |
1340 |
for (j = 0; j <= ny-1; j++) |
1341 |
{ |
1342 |
derx_los[j * nx + i] = ( (-3*los[j * nx + i]) + (4*los[j * nx + (i+1)]) - (los[j * nx + (i+2)]) )*0.5; |
1343 |
} |
1344 |
|
1345 |
i=nx-1; |
1346 |
for (j = 0; j <= ny-1; j++) |
1347 |
{ |
1348 |
derx_los[j * nx + i] = ( (3*los[j * nx + i]) + (-4*los[j * nx + (i-1)]) - (-los[j * nx + (i-2)]) )*0.5; |
1349 |
} |
1350 |
|
1351 |
j=0; |
1352 |
for (i = 0; i <= nx-1; i++) |
1353 |
{ |
1354 |
dery_los[j * nx + i] = ( (-3*los[j*nx + i]) + (4*los[(j+1) * nx + i]) - (los[(j+2) * nx + i]) )*0.5; |
1355 |
} |
1356 |
|
1357 |
j=ny-1; |
1358 |
for (i = 0; i <= nx-1; i++) |
1359 |
{ |
1360 |
dery_los[j * nx + i] = ( (3*los[j * nx + i]) + (-4*los[(j-1) * nx + i]) - (-los[(j-2) * nx + i]) )*0.5; |
1361 |
} |
1362 |
|
1363 |
|
1364 |
for (i = 0; i <= nx-1; i++) |
1365 |
{ |
1366 |
for (j = 0; j <= ny-1; j++) |
1367 |
{ |
1368 |
if ( bitmask[j * nx + i] < 30 ) continue; |
1369 |
if isnan(los[j * nx + i]) continue; |
1370 |
if isnan(los[(j+1) * nx + i]) continue; |
1371 |
if isnan(los[(j-1) * nx + i]) continue; |
1372 |
if isnan(los[j * nx + i-1]) continue; |
1373 |
if isnan(los[j * nx + i+1]) continue; |
1374 |
if isnan(derx_los[j * nx + i]) continue; |
1375 |
if isnan(dery_los[j * nx + i]) continue; |
1376 |
sum += sqrt( derx_los[j * nx + i]*derx_los[j * nx + i] + dery_los[j * nx + i]*dery_los[j * nx + i] ); /* Units of Gauss */ |
1377 |
count_mask++; |
1378 |
} |
1379 |
} |
1380 |
|
1381 |
*mean_derivative_los_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
1382 |
|
1383 |
//printf("MEANGBL=%f\n",*mean_derivative_los_ptr); |
1384 |
|
1385 |
return 0; |
1386 |
} |
1387 |
|
1388 |
/*==================KEIJI'S CODE =========================*/ |
1389 |
|
1390 |
// #include <omp.h> |
1391 |
#include <math.h> |
1392 |
|
1393 |
void greenpot(float *bx, float *by, float *bz, int nnx, int nny) |
1394 |
{ |
1395 |
/* local workings */ |
1396 |
int inx, iny, i, j, n; |
1397 |
/* local array */ |
1398 |
float *pfpot, *rdist; |
1399 |
pfpot=(float *)malloc(sizeof(float) *nnx*nny); |
1400 |
rdist=(float *)malloc(sizeof(float) *nnx*nny); |
1401 |
float *bztmp; |
1402 |
bztmp=(float *)malloc(sizeof(float) *nnx*nny); |
1403 |
/* make nan */ |
1404 |
// unsigned long long llnan = 0x7ff0000000000000; |
1405 |
// float NAN = (float)(llnan); |
1406 |
|
1407 |
// #pragma omp parallel for private (inx) |
1408 |
for (iny=0; iny < nny; iny++){for (inx=0; inx < nnx; inx++){pfpot[nnx*iny+inx] = 0.0;}} |
1409 |
// #pragma omp parallel for private (inx) |
1410 |
for (iny=0; iny < nny; iny++){for (inx=0; inx < nnx; inx++){rdist[nnx*iny+inx] = 0.0;}} |
1411 |
// #pragma omp parallel for private (inx) |
1412 |
for (iny=0; iny < nny; iny++){for (inx=0; inx < nnx; inx++){bx[nnx*iny+inx] = 0.0;}} |
1413 |
// #pragma omp parallel for private (inx) |
1414 |
for (iny=0; iny < nny; iny++){for (inx=0; inx < nnx; inx++){by[nnx*iny+inx] = 0.0;}} |
1415 |
// #pragma omp parallel for private (inx) |
1416 |
for (iny=0; iny < nny; iny++){for (inx=0; inx < nnx; inx++) |
1417 |
{ |
1418 |
float val0 = bz[nnx*iny + inx]; |
1419 |
if (isnan(val0)){bztmp[nnx*iny + inx] = 0.0;}else{bztmp[nnx*iny + inx] = val0;} |
1420 |
}} |
1421 |
|
1422 |
// dz is the monopole depth |
1423 |
float dz = 0.001; |
1424 |
|
1425 |
// #pragma omp parallel for private (inx) |
1426 |
for (iny=0; iny < nny; iny++){for (inx=0; inx < nnx; inx++) |
1427 |
{ |
1428 |
float rdd, rdd1, rdd2; |
1429 |
float r; |
1430 |
rdd1 = (float)(inx); |
1431 |
rdd2 = (float)(iny); |
1432 |
rdd = rdd1 * rdd1 + rdd2 * rdd2 + dz * dz; |
1433 |
rdist[nnx*iny+inx] = 1.0/sqrt(rdd); |
1434 |
}} |
1435 |
|
1436 |
int iwindow; |
1437 |
if (nnx > nny) {iwindow = nnx;} else {iwindow = nny;} |
1438 |
float rwindow; |
1439 |
rwindow = (float)(iwindow); |
1440 |
rwindow = rwindow * rwindow + 0.01; // must be of square |
1441 |
|
1442 |
rwindow = 1.0e2; // limit the window size to be 10. |
1443 |
|
1444 |
rwindow = sqrt(rwindow); |
1445 |
iwindow = (int)(rwindow); |
1446 |
|
1447 |
// #pragma omp parallel for private(inx) |
1448 |
for (iny=0;iny<nny;iny++){for (inx=0;inx<nnx;inx++) |
1449 |
{ |
1450 |
float val0 = bz[nnx*iny + inx]; |
1451 |
if (isnan(val0)) |
1452 |
{ |
1453 |
pfpot[nnx*iny + inx] = 0.0; // hmmm.. NAN; |
1454 |
} |
1455 |
else |
1456 |
{ |
1457 |
float sum; |
1458 |
sum = 0.0; |
1459 |
int j2, i2; |
1460 |
int j2s, j2e, i2s, i2e; |
1461 |
j2s = iny - iwindow; |
1462 |
j2e = iny + iwindow; |
1463 |
if (j2s < 0){j2s = 0;} |
1464 |
if (j2e > nny){j2e = nny;} |
1465 |
i2s = inx - iwindow; |
1466 |
i2e = inx + iwindow; |
1467 |
if (i2s < 0){i2s = 0;} |
1468 |
if (i2e > nnx){i2e = nnx;} |
1469 |
|
1470 |
for (j2=j2s;j2<j2e;j2++){for (i2=i2s;i2<i2e;i2++) |
1471 |
{ |
1472 |
float val1 = bztmp[nnx*j2 + i2]; |
1473 |
float rr, r1, r2; |
1474 |
// r1 = (float)(i2 - inx); |
1475 |
// r2 = (float)(j2 - iny); |
1476 |
// rr = r1*r1 + r2*r2; |
1477 |
// if (rr < rwindow) |
1478 |
// { |
1479 |
int di, dj; |
1480 |
di = abs(i2 - inx); |
1481 |
dj = abs(j2 - iny); |
1482 |
sum = sum + val1 * rdist[nnx * dj + di] * dz; |
1483 |
// } |
1484 |
} } |
1485 |
pfpot[nnx*iny + inx] = sum; // Note that this is a simplified definition. |
1486 |
} |
1487 |
} } // end of OpenMP parallelism |
1488 |
|
1489 |
// #pragma omp parallel for private(inx) |
1490 |
for (iny=1; iny < nny - 1; iny++){for (inx=1; inx < nnx - 1; inx++) |
1491 |
{ |
1492 |
bx[nnx*iny + inx] = -(pfpot[nnx*iny + (inx+1)]-pfpot[nnx*iny + (inx-1)]) * 0.5; |
1493 |
by[nnx*iny + inx] = -(pfpot[nnx*(iny+1) + inx]-pfpot[nnx*(iny-1) + inx]) * 0.5; |
1494 |
} } // end of OpenMP parallelism |
1495 |
|
1496 |
free(rdist); |
1497 |
free(pfpot); |
1498 |
free(bztmp); |
1499 |
} // end of void func. greenpot |
1500 |
|
1501 |
|
1502 |
/*===========END OF KEIJI'S CODE =========================*/ |
1503 |
|
1504 |
char *sw_functions_version() // Returns CVS version of sw_functions.c |
1505 |
{ |
1506 |
return strdup("$Id"); |
1507 |
} |
1508 |
|
1509 |
/* ---------------- end of this file ----------------*/ |