1 |
|
/*=========================================== |
2 |
|
|
3 |
< |
The following 13 functions calculate the following spaceweather indices: |
3 |
> |
The following 14 functions calculate the following spaceweather indices: |
4 |
|
|
5 |
|
USFLUX Total unsigned flux in Maxwells |
6 |
|
MEANGAM Mean inclination angle, gamma, in degrees |
20 |
|
|
21 |
|
The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and |
22 |
|
pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD |
23 |
< |
coordinate bitmaps are interpolated. |
23 |
> |
coordinate bitmaps are interpolated for certain data (at the time of this CVS submit, all data |
24 |
> |
prior to 2013.08.21_17:24:00_TAI contain interpolated bitmaps; data post-2013.08.21_17:24:00_TAI |
25 |
> |
contain nearest-neighbor bitmaps). |
26 |
|
|
27 |
|
In the CCD coordinates, this means that we are selecting the pixels that equal 90 in conf_disambig |
28 |
< |
and the pixels that equal 33 or 44 in bitmap. Here are the definitions of the pixel values: |
28 |
> |
and the pixels that equal 33 or 34 in bitmap. Here are the definitions of the pixel values: |
29 |
|
|
30 |
|
For conf_disambig: |
31 |
|
50 : not all solutions agree (weak field method applied) |
39 |
|
33 : weak field inside smooth bounding curve |
40 |
|
34 : strong field inside smooth bounding curve |
41 |
|
|
42 |
< |
Written by Monica Bobra 15 August 2012 |
42 |
> |
Written by Monica Bobra 15 August 2012 |
43 |
|
Potential Field code (appended) written by Keiji Hayashi |
44 |
+ |
Error analysis modification 21 October 2013 |
45 |
|
|
46 |
|
===========================================*/ |
47 |
|
#include <math.h> |
48 |
+ |
#include <mkl.h> |
49 |
|
|
50 |
< |
#define PI (M_PI) |
50 |
> |
#define PI (M_PI) |
51 |
|
#define MUNAUGHT (0.0000012566370614) /* magnetic constant */ |
52 |
|
|
53 |
|
/*===========================================*/ |
63 |
|
// To convert G to G*cm^2, simply multiply by the number of square centimeters per pixel. |
64 |
|
// As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). |
65 |
|
// (Gauss/pix^2)(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.cm/m)^2 |
66 |
< |
// =(Gauss/pix^2)(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2 |
63 |
< |
// =(1.30501e15)Gauss*cm^2 |
66 |
> |
// =Gauss*cm^2 |
67 |
|
|
68 |
< |
// The disambig mask value selects only the pixels with values of 5 or 7 -- that is, |
69 |
< |
// 5: pixels for which the radial acute disambiguation solution was chosen |
70 |
< |
// 7: pixels for which the radial acute and NRWA disambiguation agree |
68 |
< |
|
69 |
< |
int computeAbsFlux(float *bz, int *dims, float *absFlux, |
70 |
< |
float *mean_vf_ptr, int *mask, int *bitmask, |
71 |
< |
float cdelt1, double rsun_ref, double rsun_obs) |
68 |
> |
int computeAbsFlux(float *bz_err, float *bz, int *dims, float *absFlux, |
69 |
> |
float *mean_vf_ptr, float *mean_vf_err_ptr, float *count_mask_ptr, int *mask, |
70 |
> |
int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
71 |
|
|
72 |
|
{ |
73 |
|
|
74 |
< |
int nx = dims[0], ny = dims[1]; |
75 |
< |
int i, j, count_mask=0; |
76 |
< |
double sum=0.0; |
77 |
< |
|
78 |
< |
if (nx <= 0 || ny <= 0) return 1; |
79 |
< |
|
74 |
> |
int nx = dims[0]; |
75 |
> |
int ny = dims[1]; |
76 |
> |
int i = 0; |
77 |
> |
int j = 0; |
78 |
> |
int count_mask = 0; |
79 |
> |
double sum = 0.0; |
80 |
> |
double err = 0.0; |
81 |
|
*absFlux = 0.0; |
82 |
< |
*mean_vf_ptr =0.0; |
82 |
> |
*mean_vf_ptr = 0.0; |
83 |
> |
|
84 |
> |
|
85 |
> |
if (nx <= 0 || ny <= 0) return 1; |
86 |
|
|
87 |
< |
for (j = 0; j < ny; j++) |
87 |
> |
for (i = 0; i < nx; i++) |
88 |
|
{ |
89 |
< |
for (i = 0; i < nx; i++) |
89 |
> |
for (j = 0; j < ny; j++) |
90 |
|
{ |
91 |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
92 |
+ |
if isnan(bz[j * nx + i]) continue; |
93 |
|
sum += (fabs(bz[j * nx + i])); |
94 |
+ |
err += bz_err[j * nx + i]*bz_err[j * nx + i]; |
95 |
|
count_mask++; |
96 |
|
} |
97 |
|
} |
98 |
|
|
99 |
< |
printf("nx=%d,ny=%d,count_mask=%d,sum=%f\n",nx,ny,count_mask,sum); |
100 |
< |
printf("cdelt1=%f,rsun_ref=%f,rsun_obs=%f\n",cdelt1,rsun_ref,rsun_obs); |
101 |
< |
*mean_vf_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
99 |
> |
*mean_vf_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
100 |
> |
*mean_vf_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); // error in the unsigned flux |
101 |
> |
*count_mask_ptr = count_mask; |
102 |
|
return 0; |
103 |
|
} |
104 |
|
|
105 |
|
/*===========================================*/ |
106 |
< |
/* Example function 2: Calculate Bh in units of Gauss */ |
106 |
> |
/* Example function 2: Calculate Bh, the horizontal field, in units of Gauss */ |
107 |
|
// Native units of Bh are Gauss |
108 |
|
|
109 |
< |
int computeBh(float *bx, float *by, float *bz, float *bh, int *dims, |
109 |
> |
int computeBh(float *bx_err, float *by_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, |
110 |
|
float *mean_hf_ptr, int *mask, int *bitmask) |
111 |
|
|
112 |
|
{ |
113 |
|
|
114 |
< |
int nx = dims[0], ny = dims[1]; |
115 |
< |
int i, j, count_mask=0; |
116 |
< |
float sum=0.0; |
117 |
< |
*mean_hf_ptr =0.0; |
114 |
> |
int nx = dims[0]; |
115 |
> |
int ny = dims[1]; |
116 |
> |
int i = 0; |
117 |
> |
int j = 0; |
118 |
> |
int count_mask = 0; |
119 |
> |
double sum = 0.0; |
120 |
> |
*mean_hf_ptr = 0.0; |
121 |
|
|
122 |
|
if (nx <= 0 || ny <= 0) return 1; |
123 |
|
|
124 |
< |
for (j = 0; j < ny; j++) |
124 |
> |
for (i = 0; i < nx; i++) |
125 |
|
{ |
126 |
< |
for (i = 0; i < nx; i++) |
127 |
< |
{ |
128 |
< |
bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] ); |
129 |
< |
sum += bh[j * nx + i]; |
130 |
< |
count_mask++; |
126 |
> |
for (j = 0; j < ny; j++) |
127 |
> |
{ |
128 |
> |
if isnan(bx[j * nx + i]) |
129 |
> |
{ |
130 |
> |
bh[j * nx + i] = NAN; |
131 |
> |
bh_err[j * nx + i] = NAN; |
132 |
> |
continue; |
133 |
> |
} |
134 |
> |
if isnan(by[j * nx + i]) |
135 |
> |
{ |
136 |
> |
bh[j * nx + i] = NAN; |
137 |
> |
bh_err[j * nx + i] = NAN; |
138 |
> |
continue; |
139 |
> |
} |
140 |
> |
bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] ); |
141 |
> |
sum += bh[j * nx + i]; |
142 |
> |
bh_err[j * nx + i]=sqrt( bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i])/ bh[j * nx + i]; |
143 |
> |
count_mask++; |
144 |
|
} |
145 |
|
} |
146 |
|
|
147 |
|
*mean_hf_ptr = sum/(count_mask); // would be divided by nx*ny if shape of count_mask = shape of magnetogram |
148 |
< |
printf("*mean_hf_ptr=%f\n",*mean_hf_ptr); |
148 |
> |
|
149 |
|
return 0; |
150 |
|
} |
151 |
|
|
152 |
|
/*===========================================*/ |
153 |
|
/* Example function 3: Calculate Gamma in units of degrees */ |
154 |
|
// Native units of atan(x) are in radians; to convert from radians to degrees, multiply by (180./PI) |
155 |
+ |
// |
156 |
+ |
// Error analysis calculations are done in radians (since derivatives are only true in units of radians), |
157 |
+ |
// and multiplied by (180./PI) at the end for consistency in units. |
158 |
|
|
159 |
< |
|
160 |
< |
int computeGamma(float *bx, float *by, float *bz, float *bh, int *dims, |
137 |
< |
float *mean_gamma_ptr, int *mask, int *bitmask) |
159 |
> |
int computeGamma(float *bz_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, |
160 |
> |
float *mean_gamma_ptr, float *mean_gamma_err_ptr, int *mask, int *bitmask) |
161 |
|
{ |
162 |
< |
int nx = dims[0], ny = dims[1]; |
163 |
< |
int i, j, count_mask=0; |
162 |
> |
int nx = dims[0]; |
163 |
> |
int ny = dims[1]; |
164 |
> |
int i = 0; |
165 |
> |
int j = 0; |
166 |
> |
int count_mask = 0; |
167 |
> |
double sum = 0.0; |
168 |
> |
double err = 0.0; |
169 |
> |
*mean_gamma_ptr = 0.0; |
170 |
|
|
171 |
|
if (nx <= 0 || ny <= 0) return 1; |
143 |
– |
|
144 |
– |
*mean_gamma_ptr=0.0; |
145 |
– |
float sum=0.0; |
146 |
– |
int count=0; |
172 |
|
|
173 |
|
for (i = 0; i < nx; i++) |
174 |
|
{ |
177 |
|
if (bh[j * nx + i] > 100) |
178 |
|
{ |
179 |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
180 |
< |
sum += (atan (fabs( bz[j * nx + i] / bh[j * nx + i] ))* (180./PI)); |
181 |
< |
count_mask++; |
180 |
> |
if isnan(bz[j * nx + i]) continue; |
181 |
> |
if isnan(bz_err[j * nx + i]) continue; |
182 |
> |
if isnan(bh_err[j * nx + i]) continue; |
183 |
> |
if isnan(bh[j * nx + i]) continue; |
184 |
> |
if (bz[j * nx + i] == 0) continue; |
185 |
> |
sum += fabs(atan(bh[j * nx + i]/fabs(bz[j * nx + i])))*(180./PI); |
186 |
> |
err += (1/(1+((bh[j * nx + i]*bh[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))))*(1/(1+((bh[j * nx + i]*bh[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])))) * |
187 |
> |
( ((bh_err[j * nx + i]*bh_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])) + |
188 |
> |
((bh[j * nx + i]*bh[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]*bz[j * nx + i]*bz[j * nx + i])) ); |
189 |
> |
count_mask++; |
190 |
|
} |
191 |
|
} |
192 |
|
} |
193 |
|
|
194 |
|
*mean_gamma_ptr = sum/count_mask; |
195 |
< |
printf("*mean_gamma_ptr=%f\n",*mean_gamma_ptr); |
195 |
> |
*mean_gamma_err_ptr = (sqrt(err)/(count_mask))*(180./PI); |
196 |
> |
//printf("MEANGAM=%f\n",*mean_gamma_ptr); |
197 |
> |
//printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr); |
198 |
|
return 0; |
199 |
|
} |
200 |
|
|
202 |
|
/* Example function 4: Calculate B_Total*/ |
203 |
|
// Native units of B_Total are in gauss |
204 |
|
|
205 |
< |
int computeB_total(float *bx, float *by, float *bz, float *bt, int *dims, int *mask, int *bitmask) |
205 |
> |
int computeB_total(float *bx_err, float *by_err, float *bz_err, float *bt_err, float *bx, float *by, float *bz, float *bt, int *dims, int *mask, int *bitmask) |
206 |
|
{ |
207 |
|
|
208 |
< |
int nx = dims[0], ny = dims[1]; |
209 |
< |
int i, j, count_mask=0; |
208 |
> |
int nx = dims[0]; |
209 |
> |
int ny = dims[1]; |
210 |
> |
int i = 0; |
211 |
> |
int j = 0; |
212 |
> |
int count_mask = 0; |
213 |
|
|
214 |
|
if (nx <= 0 || ny <= 0) return 1; |
215 |
|
|
217 |
|
{ |
218 |
|
for (j = 0; j < ny; j++) |
219 |
|
{ |
220 |
< |
bt[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]); |
220 |
> |
if isnan(bx[j * nx + i]) |
221 |
> |
{ |
222 |
> |
bt[j * nx + i] = NAN; |
223 |
> |
bt_err[j * nx + i] = NAN; |
224 |
> |
continue; |
225 |
> |
} |
226 |
> |
if isnan(by[j * nx + i]) |
227 |
> |
{ |
228 |
> |
bt[j * nx + i] = NAN; |
229 |
> |
bt_err[j * nx + i] = NAN; |
230 |
> |
continue; |
231 |
> |
} |
232 |
> |
if isnan(bz[j * nx + i]) |
233 |
> |
{ |
234 |
> |
bt[j * nx + i] = NAN; |
235 |
> |
bt_err[j * nx + i] = NAN; |
236 |
> |
continue; |
237 |
> |
} |
238 |
> |
bt[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]); |
239 |
> |
bt_err[j * nx + i]=sqrt(bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i] ) / bt[j * nx + i]; |
240 |
|
} |
241 |
|
} |
242 |
|
return 0; |
245 |
|
/*===========================================*/ |
246 |
|
/* Example function 5: Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */ |
247 |
|
|
248 |
< |
int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt) |
248 |
> |
int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr) |
249 |
|
{ |
250 |
|
|
251 |
< |
int nx = dims[0], ny = dims[1]; |
252 |
< |
int i, j, count_mask=0; |
253 |
< |
|
254 |
< |
if (nx <= 0 || ny <= 0) return 1; |
255 |
< |
|
251 |
> |
int nx = dims[0]; |
252 |
> |
int ny = dims[1]; |
253 |
> |
int i = 0; |
254 |
> |
int j = 0; |
255 |
> |
int count_mask = 0; |
256 |
> |
double sum = 0.0; |
257 |
> |
double err = 0.0; |
258 |
|
*mean_derivative_btotal_ptr = 0.0; |
200 |
– |
float sum = 0.0; |
259 |
|
|
260 |
+ |
if (nx <= 0 || ny <= 0) return 1; |
261 |
|
|
262 |
|
/* brute force method of calculating the derivative (no consideration for edges) */ |
263 |
|
for (i = 1; i <= nx-2; i++) |
304 |
|
} |
305 |
|
|
306 |
|
|
307 |
< |
/* Just some print statements |
249 |
< |
for (i = 0; i < nx; i++) |
250 |
< |
{ |
251 |
< |
for (j = 0; j < ny; j++) |
252 |
< |
{ |
253 |
< |
printf("j=%d\n",j); |
254 |
< |
printf("i=%d\n",i); |
255 |
< |
printf("dery_bt[j*nx+i]=%f\n",dery_bt[j*nx+i]); |
256 |
< |
printf("derx_bt[j*nx+i]=%f\n",derx_bt[j*nx+i]); |
257 |
< |
printf("bt[j*nx+i]=%f\n",bt[j*nx+i]); |
258 |
< |
} |
259 |
< |
} |
260 |
< |
*/ |
261 |
< |
|
262 |
< |
for (i = 0; i <= nx-1; i++) |
307 |
> |
for (i = 1; i <= nx-2; i++) |
308 |
|
{ |
309 |
< |
for (j = 0; j <= ny-1; j++) |
309 |
> |
for (j = 1; j <= ny-2; j++) |
310 |
|
{ |
266 |
– |
// if ( (derx_bt[j * nx + i]-dery_bt[j * nx + i]) == 0) continue; |
311 |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
312 |
+ |
if ( (derx_bt[j * nx + i] + dery_bt[j * nx + i]) == 0) continue; |
313 |
+ |
if isnan(bt[j * nx + i]) continue; |
314 |
+ |
if isnan(bt[(j+1) * nx + i]) continue; |
315 |
+ |
if isnan(bt[(j-1) * nx + i]) continue; |
316 |
+ |
if isnan(bt[j * nx + i-1]) continue; |
317 |
+ |
if isnan(bt[j * nx + i+1]) continue; |
318 |
+ |
if isnan(bt_err[j * nx + i]) continue; |
319 |
+ |
if isnan(derx_bt[j * nx + i]) continue; |
320 |
+ |
if isnan(dery_bt[j * nx + i]) continue; |
321 |
|
sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ |
322 |
+ |
err += (((bt[(j+1) * nx + i]-bt[(j-1) * nx + i])*(bt[(j+1) * nx + i]-bt[(j-1) * nx + i])) * (bt_err[(j+1) * nx + i]*bt_err[(j+1) * nx + i] + bt_err[(j-1) * nx + i]*bt_err[(j-1) * nx + i])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ))+ |
323 |
+ |
(((bt[j * nx + (i+1)]-bt[j * nx + (i-1)])*(bt[j * nx + (i+1)]-bt[j * nx + (i-1)])) * (bt_err[j * nx + (i+1)]*bt_err[j * nx + (i+1)] + bt_err[j * nx + (i-1)]*bt_err[j * nx + (i-1)])) / (16.0*( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] )) ; |
324 |
|
count_mask++; |
325 |
|
} |
326 |
|
} |
327 |
|
|
328 |
< |
*mean_derivative_btotal_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
329 |
< |
printf("*mean_derivative_btotal_ptr=%f\n",*mean_derivative_btotal_ptr); |
328 |
> |
*mean_derivative_btotal_ptr = (sum)/(count_mask); |
329 |
> |
*mean_derivative_btotal_err_ptr = (sqrt(err))/(count_mask); |
330 |
> |
//printf("MEANGBT=%f\n",*mean_derivative_btotal_ptr); |
331 |
> |
//printf("MEANGBT_err=%f\n",*mean_derivative_btotal_err_ptr); |
332 |
> |
|
333 |
|
return 0; |
334 |
|
} |
335 |
|
|
337 |
|
/*===========================================*/ |
338 |
|
/* Example function 6: Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */ |
339 |
|
|
340 |
< |
int computeBhderivative(float *bh, int *dims, float *mean_derivative_bh_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh) |
340 |
> |
int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh) |
341 |
|
{ |
342 |
|
|
343 |
< |
int nx = dims[0], ny = dims[1]; |
344 |
< |
int i, j, count_mask=0; |
343 |
> |
int nx = dims[0]; |
344 |
> |
int ny = dims[1]; |
345 |
> |
int i = 0; |
346 |
> |
int j = 0; |
347 |
> |
int count_mask = 0; |
348 |
> |
double sum= 0.0; |
349 |
> |
double err =0.0; |
350 |
> |
*mean_derivative_bh_ptr = 0.0; |
351 |
|
|
352 |
|
if (nx <= 0 || ny <= 0) return 1; |
353 |
|
|
290 |
– |
*mean_derivative_bh_ptr = 0.0; |
291 |
– |
float sum = 0.0; |
292 |
– |
|
354 |
|
/* brute force method of calculating the derivative (no consideration for edges) */ |
355 |
|
for (i = 1; i <= nx-2; i++) |
356 |
|
{ |
396 |
|
} |
397 |
|
|
398 |
|
|
338 |
– |
/*Just some print statements |
339 |
– |
for (i = 0; i < nx; i++) |
340 |
– |
{ |
341 |
– |
for (j = 0; j < ny; j++) |
342 |
– |
{ |
343 |
– |
printf("j=%d\n",j); |
344 |
– |
printf("i=%d\n",i); |
345 |
– |
printf("dery_bh[j*nx+i]=%f\n",dery_bh[j*nx+i]); |
346 |
– |
printf("derx_bh[j*nx+i]=%f\n",derx_bh[j*nx+i]); |
347 |
– |
printf("bh[j*nx+i]=%f\n",bh[j*nx+i]); |
348 |
– |
} |
349 |
– |
} |
350 |
– |
*/ |
351 |
– |
|
399 |
|
for (i = 0; i <= nx-1; i++) |
400 |
|
{ |
401 |
|
for (j = 0; j <= ny-1; j++) |
402 |
|
{ |
356 |
– |
// if ( (derx_bh[j * nx + i]-dery_bh[j * nx + i]) == 0) continue; |
403 |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
404 |
+ |
if ( (derx_bh[j * nx + i] + dery_bh[j * nx + i]) == 0) continue; |
405 |
+ |
if isnan(bh[j * nx + i]) continue; |
406 |
+ |
if isnan(bh[(j+1) * nx + i]) continue; |
407 |
+ |
if isnan(bh[(j-1) * nx + i]) continue; |
408 |
+ |
if isnan(bh[j * nx + i-1]) continue; |
409 |
+ |
if isnan(bh[j * nx + i+1]) continue; |
410 |
+ |
if isnan(bh_err[j * nx + i]) continue; |
411 |
+ |
if isnan(derx_bh[j * nx + i]) continue; |
412 |
+ |
if isnan(dery_bh[j * nx + i]) continue; |
413 |
|
sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ |
414 |
+ |
err += (((bh[(j+1) * nx + i]-bh[(j-1) * nx + i])*(bh[(j+1) * nx + i]-bh[(j-1) * nx + i])) * (bh_err[(j+1) * nx + i]*bh_err[(j+1) * nx + i] + bh_err[(j-1) * nx + i]*bh_err[(j-1) * nx + i])) / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ))+ |
415 |
+ |
(((bh[j * nx + (i+1)]-bh[j * nx + (i-1)])*(bh[j * nx + (i+1)]-bh[j * nx + (i-1)])) * (bh_err[j * nx + (i+1)]*bh_err[j * nx + (i+1)] + bh_err[j * nx + (i-1)]*bh_err[j * nx + (i-1)])) / (16.0*( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] )) ; |
416 |
|
count_mask++; |
417 |
|
} |
418 |
|
} |
419 |
|
|
420 |
< |
*mean_derivative_bh_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
420 |
> |
*mean_derivative_bh_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
421 |
> |
*mean_derivative_bh_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
422 |
> |
//printf("MEANGBH=%f\n",*mean_derivative_bh_ptr); |
423 |
> |
//printf("MEANGBH_err=%f\n",*mean_derivative_bh_err_ptr); |
424 |
> |
|
425 |
|
return 0; |
426 |
|
} |
427 |
|
|
428 |
|
/*===========================================*/ |
429 |
|
/* Example function 7: Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */ |
430 |
|
|
431 |
< |
int computeBzderivative(float *bz, int *dims, float *mean_derivative_bz_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz) |
431 |
> |
int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz) |
432 |
|
{ |
433 |
|
|
434 |
< |
int nx = dims[0], ny = dims[1]; |
435 |
< |
int i, j, count_mask=0; |
434 |
> |
int nx = dims[0]; |
435 |
> |
int ny = dims[1]; |
436 |
> |
int i = 0; |
437 |
> |
int j = 0; |
438 |
> |
int count_mask = 0; |
439 |
> |
double sum = 0.0; |
440 |
> |
double err = 0.0; |
441 |
> |
*mean_derivative_bz_ptr = 0.0; |
442 |
|
|
443 |
|
if (nx <= 0 || ny <= 0) return 1; |
444 |
|
|
378 |
– |
*mean_derivative_bz_ptr = 0.0; |
379 |
– |
float sum = 0.0; |
380 |
– |
|
445 |
|
/* brute force method of calculating the derivative (no consideration for edges) */ |
446 |
|
for (i = 1; i <= nx-2; i++) |
447 |
|
{ |
448 |
|
for (j = 0; j <= ny-1; j++) |
449 |
|
{ |
450 |
+ |
if isnan(bz[j * nx + i]) continue; |
451 |
|
derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5; |
452 |
|
} |
453 |
|
} |
457 |
|
{ |
458 |
|
for (j = 1; j <= ny-2; j++) |
459 |
|
{ |
460 |
+ |
if isnan(bz[j * nx + i]) continue; |
461 |
|
dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5; |
462 |
|
} |
463 |
|
} |
467 |
|
i=0; |
468 |
|
for (j = 0; j <= ny-1; j++) |
469 |
|
{ |
470 |
+ |
if isnan(bz[j * nx + i]) continue; |
471 |
|
derx_bz[j * nx + i] = ( (-3*bz[j * nx + i]) + (4*bz[j * nx + (i+1)]) - (bz[j * nx + (i+2)]) )*0.5; |
472 |
|
} |
473 |
|
|
474 |
|
i=nx-1; |
475 |
|
for (j = 0; j <= ny-1; j++) |
476 |
|
{ |
477 |
+ |
if isnan(bz[j * nx + i]) continue; |
478 |
|
derx_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[j * nx + (i-1)]) - (-bz[j * nx + (i-2)]) )*0.5; |
479 |
|
} |
480 |
|
|
481 |
|
j=0; |
482 |
|
for (i = 0; i <= nx-1; i++) |
483 |
|
{ |
484 |
+ |
if isnan(bz[j * nx + i]) continue; |
485 |
|
dery_bz[j * nx + i] = ( (-3*bz[j*nx + i]) + (4*bz[(j+1) * nx + i]) - (bz[(j+2) * nx + i]) )*0.5; |
486 |
|
} |
487 |
|
|
488 |
|
j=ny-1; |
489 |
|
for (i = 0; i <= nx-1; i++) |
490 |
|
{ |
491 |
+ |
if isnan(bz[j * nx + i]) continue; |
492 |
|
dery_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[(j-1) * nx + i]) - (-bz[(j-2) * nx + i]) )*0.5; |
493 |
|
} |
494 |
|
|
495 |
|
|
426 |
– |
/*Just some print statements |
427 |
– |
for (i = 0; i < nx; i++) |
428 |
– |
{ |
429 |
– |
for (j = 0; j < ny; j++) |
430 |
– |
{ |
431 |
– |
printf("j=%d\n",j); |
432 |
– |
printf("i=%d\n",i); |
433 |
– |
printf("dery_bz[j*nx+i]=%f\n",dery_bz[j*nx+i]); |
434 |
– |
printf("derx_bz[j*nx+i]=%f\n",derx_bz[j*nx+i]); |
435 |
– |
printf("bz[j*nx+i]=%f\n",bz[j*nx+i]); |
436 |
– |
} |
437 |
– |
} |
438 |
– |
*/ |
439 |
– |
|
496 |
|
for (i = 0; i <= nx-1; i++) |
497 |
|
{ |
498 |
|
for (j = 0; j <= ny-1; j++) |
499 |
|
{ |
444 |
– |
// if ( (derx_bz[j * nx + i]-dery_bz[j * nx + i]) == 0) continue; |
500 |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
501 |
+ |
if ( (derx_bz[j * nx + i] + dery_bz[j * nx + i]) == 0) continue; |
502 |
+ |
if isnan(bz[j * nx + i]) continue; |
503 |
+ |
if isnan(bz[(j+1) * nx + i]) continue; |
504 |
+ |
if isnan(bz[(j-1) * nx + i]) continue; |
505 |
+ |
if isnan(bz[j * nx + i-1]) continue; |
506 |
+ |
if isnan(bz[j * nx + i+1]) continue; |
507 |
+ |
if isnan(bz_err[j * nx + i]) continue; |
508 |
+ |
if isnan(derx_bz[j * nx + i]) continue; |
509 |
+ |
if isnan(dery_bz[j * nx + i]) continue; |
510 |
|
sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] ); /* Units of Gauss */ |
511 |
+ |
err += (((bz[(j+1) * nx + i]-bz[(j-1) * nx + i])*(bz[(j+1) * nx + i]-bz[(j-1) * nx + i])) * (bz_err[(j+1) * nx + i]*bz_err[(j+1) * nx + i] + bz_err[(j-1) * nx + i]*bz_err[(j-1) * nx + i])) / |
512 |
+ |
(16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) + |
513 |
+ |
(((bz[j * nx + (i+1)]-bz[j * nx + (i-1)])*(bz[j * nx + (i+1)]-bz[j * nx + (i-1)])) * (bz_err[j * nx + (i+1)]*bz_err[j * nx + (i+1)] + bz_err[j * nx + (i-1)]*bz_err[j * nx + (i-1)])) / |
514 |
+ |
(16.0*( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] )) ; |
515 |
|
count_mask++; |
516 |
|
} |
517 |
|
} |
518 |
|
|
519 |
|
*mean_derivative_bz_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
520 |
+ |
*mean_derivative_bz_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
521 |
+ |
//printf("MEANGBZ=%f\n",*mean_derivative_bz_ptr); |
522 |
+ |
//printf("MEANGBZ_err=%f\n",*mean_derivative_bz_err_ptr); |
523 |
+ |
|
524 |
|
return 0; |
525 |
|
} |
526 |
|
|
527 |
|
/*===========================================*/ |
456 |
– |
|
528 |
|
/* Example function 8: Current Jz = (dBy/dx) - (dBx/dy) */ |
529 |
|
|
530 |
|
// In discretized space like data pixels, |
541 |
|
// |
542 |
|
// To change units from Gauss/pixel to mA/m^2 (the units for Jz in Leka and Barnes, 2003), |
543 |
|
// one must perform the following unit conversions: |
544 |
< |
// (Gauss/pix)(pix/arcsec)(arcsec/meter)(Newton/Gauss*Ampere*meter)(Ampere^2/Newton)(milliAmpere/Ampere), or |
545 |
< |
// (Gauss/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF)(1 T / 10^4 Gauss)(1 / 4*PI*10^-7)( 10^3 milliAmpere/Ampere), |
544 |
> |
// (Gauss)(1/arcsec)(arcsec/meter)(Newton/Gauss*Ampere*meter)(Ampere^2/Newton)(milliAmpere/Ampere), or |
545 |
> |
// (Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(1 T / 10^4 Gauss)(1 / 4*PI*10^-7)( 10^3 milliAmpere/Ampere), or |
546 |
> |
// (Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(1000.), |
547 |
|
// where a Tesla is represented as a Newton/Ampere*meter. |
548 |
+ |
// |
549 |
|
// As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). |
550 |
|
// In that case, we would have the following: |
551 |
|
// (Gauss/pix)(1/0.5)(1/722500)(10^-4)(4*PI*10^7)(10^3), or |
552 |
|
// jz * (35.0) |
553 |
|
// |
554 |
|
// The units of total unsigned vertical current (us_i) are simply in A. In this case, we would have the following: |
555 |
< |
// (Gauss/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(1000.) |
556 |
< |
// =(Gauss/pix)(1/CDELT1)(0.0010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(1000.) |
484 |
< |
// =(Gauss/pix)(1/0.5)(10^-4)(4*PI*10^7)(722500)(1000.) |
485 |
< |
// =(Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(1000.) |
555 |
> |
// (Gauss/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(CDELT1)(CDELT1)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS) |
556 |
> |
// = (Gauss/pix)(0.00010)(1/MUNAUGHT)(CDELT1)(RSUN_REF/RSUN_OBS) |
557 |
|
|
487 |
– |
int computeJz(float *bx, float *by, int *dims, float *jz, |
488 |
– |
float *mean_jz_ptr, float *us_i_ptr, int *mask, int *bitmask, |
489 |
– |
float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) |
558 |
|
|
559 |
+ |
// Comment out random number generator, which can only run on solar3 |
560 |
+ |
//int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, |
561 |
+ |
// int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery, float *noisebx, |
562 |
+ |
// float *noiseby, float *noisebz) |
563 |
|
|
564 |
+ |
int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, |
565 |
+ |
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) |
566 |
|
|
493 |
– |
{ |
567 |
|
|
568 |
< |
int nx = dims[0], ny = dims[1]; |
569 |
< |
int i, j, count_mask=0; |
568 |
> |
{ |
569 |
> |
int nx = dims[0]; |
570 |
> |
int ny = dims[1]; |
571 |
> |
int i = 0; |
572 |
> |
int j = 0; |
573 |
> |
int count_mask = 0; |
574 |
|
|
575 |
< |
if (nx <= 0 || ny <= 0) return 1; |
499 |
< |
|
500 |
< |
*mean_jz_ptr = 0.0; |
501 |
< |
float curl=0.0, us_i=0.0,test_perimeter=0.0,mean_curl=0.0; |
502 |
< |
|
575 |
> |
if (nx <= 0 || ny <= 0) return 1; |
576 |
|
|
577 |
+ |
/* Calculate the derivative*/ |
578 |
|
/* brute force method of calculating the derivative (no consideration for edges) */ |
579 |
+ |
|
580 |
|
for (i = 1; i <= nx-2; i++) |
581 |
|
{ |
582 |
|
for (j = 0; j <= ny-1; j++) |
583 |
|
{ |
584 |
+ |
if isnan(by[j * nx + i]) continue; |
585 |
|
derx[j * nx + i] = (by[j * nx + i+1] - by[j * nx + i-1])*0.5; |
586 |
|
} |
587 |
|
} |
588 |
|
|
513 |
– |
/* brute force method of calculating the derivative (no consideration for edges) */ |
589 |
|
for (i = 0; i <= nx-1; i++) |
590 |
|
{ |
591 |
|
for (j = 1; j <= ny-2; j++) |
592 |
|
{ |
593 |
+ |
if isnan(bx[j * nx + i]) continue; |
594 |
|
dery[j * nx + i] = (bx[(j+1) * nx + i] - bx[(j-1) * nx + i])*0.5; |
595 |
|
} |
596 |
|
} |
597 |
|
|
598 |
< |
|
523 |
< |
/* consider the edges */ |
598 |
> |
// consider the edges |
599 |
|
i=0; |
600 |
|
for (j = 0; j <= ny-1; j++) |
601 |
|
{ |
602 |
+ |
if isnan(by[j * nx + i]) continue; |
603 |
|
derx[j * nx + i] = ( (-3*by[j * nx + i]) + (4*by[j * nx + (i+1)]) - (by[j * nx + (i+2)]) )*0.5; |
604 |
|
} |
605 |
|
|
606 |
|
i=nx-1; |
607 |
|
for (j = 0; j <= ny-1; j++) |
608 |
|
{ |
609 |
+ |
if isnan(by[j * nx + i]) continue; |
610 |
|
derx[j * nx + i] = ( (3*by[j * nx + i]) + (-4*by[j * nx + (i-1)]) - (-by[j * nx + (i-2)]) )*0.5; |
611 |
< |
} |
611 |
> |
} |
612 |
|
|
613 |
|
j=0; |
614 |
|
for (i = 0; i <= nx-1; i++) |
615 |
|
{ |
616 |
+ |
if isnan(bx[j * nx + i]) continue; |
617 |
|
dery[j * nx + i] = ( (-3*bx[j*nx + i]) + (4*bx[(j+1) * nx + i]) - (bx[(j+2) * nx + i]) )*0.5; |
618 |
|
} |
619 |
|
|
620 |
|
j=ny-1; |
621 |
< |
for (i = 0; i <= nx-1; i++) |
621 |
> |
for (i = 0; i <= nx-1; i++) |
622 |
|
{ |
623 |
+ |
if isnan(bx[j * nx + i]) continue; |
624 |
|
dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5; |
625 |
|
} |
626 |
|
|
627 |
< |
/* Just some print statements |
628 |
< |
for (i = 0; i < nx; i++) |
629 |
< |
{ |
630 |
< |
for (j = 0; j < ny; j++) |
631 |
< |
{ |
632 |
< |
printf("j=%d\n",j); |
633 |
< |
printf("i=%d\n",i); |
634 |
< |
printf("dery[j*nx+i]=%f\n",dery[j*nx+i]); |
635 |
< |
printf("derx[j*nx+i]=%f\n",derx[j*nx+i]); |
636 |
< |
printf("bx[j*nx+i]=%f\n",bx[j*nx+i]); |
637 |
< |
printf("by[j*nx+i]=%f\n",by[j*nx+i]); |
638 |
< |
} |
639 |
< |
} |
640 |
< |
*/ |
627 |
> |
for (i = 1; i <= nx-2; i++) |
628 |
> |
{ |
629 |
> |
for (j = 1; j <= ny-2; j++) |
630 |
> |
{ |
631 |
> |
// calculate jz at all points |
632 |
> |
|
633 |
> |
jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); // jz is in units of Gauss/pix |
634 |
> |
jz_err[j * nx + i] = 0.5*sqrt( (bx_err[(j+1) * nx + i]*bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i]*bx_err[(j-1) * nx + i]) + |
635 |
> |
(by_err[j * nx + (i+1)]*by_err[j * nx + (i+1)]) + (by_err[j * nx + (i-1)]*by_err[j * nx + (i-1)]) ) ; |
636 |
> |
jz_err_squared[j * nx + i]= (jz_err[j * nx + i]*jz_err[j * nx + i]); |
637 |
> |
count_mask++; |
638 |
> |
|
639 |
> |
} |
640 |
> |
} |
641 |
> |
return 0; |
642 |
> |
} |
643 |
> |
|
644 |
> |
/*===========================================*/ |
645 |
> |
|
646 |
> |
/* Example function 9: Compute quantities on Jz array */ |
647 |
> |
// Compute mean and total current on Jz array. |
648 |
> |
|
649 |
> |
int computeJzsmooth(float *bx, float *by, int *dims, float *jz, float *jz_smooth, float *jz_err, float *jz_rms_err, float *jz_err_squared_smooth, |
650 |
> |
float *mean_jz_ptr, float *mean_jz_err_ptr, float *us_i_ptr, float *us_i_err_ptr, int *mask, int *bitmask, |
651 |
> |
float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) |
652 |
> |
|
653 |
> |
{ |
654 |
|
|
655 |
+ |
int nx = dims[0]; |
656 |
+ |
int ny = dims[1]; |
657 |
+ |
int i = 0; |
658 |
+ |
int j = 0; |
659 |
+ |
int count_mask = 0; |
660 |
+ |
double curl = 0.0; |
661 |
+ |
double us_i = 0.0; |
662 |
+ |
double err = 0.0; |
663 |
|
|
664 |
+ |
if (nx <= 0 || ny <= 0) return 1; |
665 |
+ |
|
666 |
+ |
/* At this point, use the smoothed Jz array with a Gaussian (FWHM of 4 pix and truncation width of 12 pixels) but keep the original array dimensions*/ |
667 |
|
for (i = 0; i <= nx-1; i++) |
668 |
|
{ |
669 |
|
for (j = 0; j <= ny-1; j++) |
670 |
|
{ |
568 |
– |
// if ( (derx[j * nx + i]-dery[j * nx + i]) == 0) continue; |
671 |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
672 |
< |
curl += (derx[j * nx + i]-dery[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */ |
673 |
< |
us_i += fabs(derx[j * nx + i]-dery[j * nx + i])*(1/cdelt1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT); /* us_i is in units of A / m^2 */ |
674 |
< |
jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); /* jz is in units of Gauss/pix */ |
675 |
< |
|
672 |
> |
if isnan(derx[j * nx + i]) continue; |
673 |
> |
if isnan(dery[j * nx + i]) continue; |
674 |
> |
if isnan(jz[j * nx + i]) continue; |
675 |
> |
curl += (jz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */ |
676 |
> |
us_i += fabs(jz[j * nx + i])*(cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT); /* us_i is in units of A */ |
677 |
> |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]); |
678 |
|
count_mask++; |
679 |
< |
} |
679 |
> |
} |
680 |
|
} |
681 |
|
|
682 |
< |
mean_curl = (curl/count_mask); |
579 |
< |
printf("mean_curl=%f\n",mean_curl); |
580 |
< |
printf("cdelt1, what is it?=%f\n",cdelt1); |
682 |
> |
/* Calculate mean vertical current density (mean_jz) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */ |
683 |
|
*mean_jz_ptr = curl/(count_mask); /* mean_jz gets populated as MEANJZD */ |
684 |
< |
printf("count_mask=%d\n",count_mask); |
685 |
< |
*us_i_ptr = (us_i); /* us_i gets populated as MEANJZD */ |
684 |
> |
*mean_jz_err_ptr = (sqrt(err)/count_mask)*((1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.)); // error in the quantity MEANJZD |
685 |
> |
|
686 |
> |
*us_i_ptr = (us_i); /* us_i gets populated as TOTUSJZ */ |
687 |
> |
*us_i_err_ptr = (sqrt(err))*((cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT)); // error in the quantity TOTUSJZ |
688 |
> |
|
689 |
> |
//printf("MEANJZD=%f\n",*mean_jz_ptr); |
690 |
> |
//printf("MEANJZD_err=%f\n",*mean_jz_err_ptr); |
691 |
> |
|
692 |
> |
//printf("TOTUSJZ=%g\n",*us_i_ptr); |
693 |
> |
//printf("TOTUSJZ_err=%g\n",*us_i_err_ptr); |
694 |
> |
|
695 |
|
return 0; |
696 |
|
|
697 |
|
} |
698 |
|
|
588 |
– |
|
699 |
|
/*===========================================*/ |
590 |
– |
/* Example function 9: Twist Parameter, alpha */ |
700 |
|
|
701 |
< |
// The twist parameter, alpha, is defined as alpha = Jz/Bz and the units are in 1/Mm |
701 |
> |
/* Example function 10: Twist Parameter, alpha */ |
702 |
> |
|
703 |
> |
// The twist parameter, alpha, is defined as alpha = Jz/Bz. In this case, the calculation |
704 |
> |
// for alpha is weighted by Bz (following Hagino et al., http://adsabs.harvard.edu/abs/2004PASJ...56..831H): |
705 |
> |
|
706 |
> |
// numerator = sum of all Jz*Bz |
707 |
> |
// denominator = sum of Bz*Bz |
708 |
> |
// alpha = numerator/denominator |
709 |
> |
|
710 |
> |
// The units of alpha are in 1/Mm |
711 |
|
// The units of Jz are in Gauss/pix; the units of Bz are in Gauss. |
712 |
|
// |
713 |
|
// Therefore, the units of Jz/Bz = (Gauss/pix)(1/Gauss)(pix/arcsec)(arsec/meter)(meter/Mm), or |
714 |
|
// = (Gauss/pix)(1/Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(10^6) |
715 |
|
// = 1/Mm |
716 |
|
|
717 |
< |
int computeAlpha(float *bz, int *dims, float *jz, float *mean_alpha_ptr, int *mask, int *bitmask, |
718 |
< |
float cdelt1, double rsun_ref, double rsun_obs) |
717 |
> |
int computeAlpha(float *jz_err, float *bz_err, float *bz, int *dims, float *jz, float *jz_smooth, float *mean_alpha_ptr, float *mean_alpha_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
718 |
> |
|
719 |
|
{ |
720 |
< |
int nx = dims[0], ny = dims[1]; |
721 |
< |
int i, j, count_mask=0; |
720 |
> |
int nx = dims[0]; |
721 |
> |
int ny = dims[1]; |
722 |
> |
int i = 0; |
723 |
> |
int j = 0; |
724 |
> |
double alpha_total = 0.0; |
725 |
> |
double C = ((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)); |
726 |
> |
double total = 0.0; |
727 |
> |
double A = 0.0; |
728 |
> |
double B = 0.0; |
729 |
|
|
730 |
|
if (nx <= 0 || ny <= 0) return 1; |
731 |
< |
|
732 |
< |
*mean_alpha_ptr = 0.0; |
733 |
< |
float aa, bb, cc, bznew, alpha2, sum=0.0; |
731 |
> |
for (i = 1; i < nx-1; i++) |
732 |
> |
{ |
733 |
> |
for (j = 1; j < ny-1; j++) |
734 |
> |
{ |
735 |
> |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
736 |
> |
if isnan(jz[j * nx + i]) continue; |
737 |
> |
if isnan(bz[j * nx + i]) continue; |
738 |
> |
if (jz[j * nx + i] == 0.0) continue; |
739 |
> |
if (bz[j * nx + i] == 0.0) continue; |
740 |
> |
A += jz[j*nx+i]*bz[j*nx+i]; |
741 |
> |
B += bz[j*nx+i]*bz[j*nx+i]; |
742 |
> |
} |
743 |
> |
} |
744 |
|
|
745 |
|
for (i = 1; i < nx-1; i++) |
746 |
|
{ |
747 |
|
for (j = 1; j < ny-1; j++) |
748 |
|
{ |
749 |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
750 |
< |
if isnan(jz[j * nx + i]) continue; |
751 |
< |
if isnan(bz[j * nx + i]) continue; |
750 |
> |
if isnan(jz[j * nx + i]) continue; |
751 |
> |
if isnan(bz[j * nx + i]) continue; |
752 |
> |
if (jz[j * nx + i] == 0.0) continue; |
753 |
|
if (bz[j * nx + i] == 0.0) continue; |
754 |
< |
sum += (jz[j * nx + i] / bz[j * nx + i])*((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)) ; /* the units for (jz/bz) are 1/Mm */ |
755 |
< |
count_mask++; |
620 |
< |
} |
754 |
> |
total += bz[j*nx+i]*bz[j*nx+i]*jz_err[j*nx+i]*jz_err[j*nx+i] + (jz[j*nx+i]-2*bz[j*nx+i]*A/B)*(jz[j*nx+i]-2*bz[j*nx+i]*A/B)*bz_err[j*nx+i]*bz_err[j*nx+i]; |
755 |
> |
} |
756 |
|
} |
757 |
|
|
758 |
< |
printf("cdelt1=%f,rsun_ref=%f,rsun_obs=%f\n",cdelt1,rsun_ref,rsun_obs); |
759 |
< |
printf("count_mask=%d\n",count_mask); |
760 |
< |
printf("sum=%f\n",sum); |
761 |
< |
*mean_alpha_ptr = sum/count_mask; /* Units are 1/Mm */ |
758 |
> |
/* Determine the absolute value of alpha. The units for alpha are 1/Mm */ |
759 |
> |
alpha_total = ((A/B)*C); |
760 |
> |
*mean_alpha_ptr = alpha_total; |
761 |
> |
*mean_alpha_err_ptr = (C/B)*(sqrt(total)); |
762 |
> |
|
763 |
|
return 0; |
764 |
|
} |
765 |
|
|
766 |
|
/*===========================================*/ |
767 |
< |
/* Example function 10: Helicity (mean current helicty, mean unsigned current helicity, and mean absolute current helicity) */ |
767 |
> |
/* Example function 11: Helicity (mean current helicty, total unsigned current helicity, absolute value of net current helicity) */ |
768 |
|
|
769 |
|
// The current helicity is defined as Bz*Jz and the units are G^2 / m |
770 |
|
// The units of Jz are in G/pix; the units of Bz are in G. |
771 |
< |
// Therefore, the units of Bz*Jz = (Gauss)*(Gauss/pix) = (Gauss^2/pix)(pix/arcsec)(arcsec/m) |
771 |
> |
// Therefore, the units of Bz*Jz = (Gauss)*(Gauss/pix) = (Gauss^2/pix)(pix/arcsec)(arcsec/meter) |
772 |
|
// = (Gauss^2/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF) |
773 |
< |
// = G^2 / m. |
773 |
> |
// = G^2 / m. |
774 |
|
|
775 |
< |
|
776 |
< |
int computeHelicity(float *bz, int *dims, float *jz, float *mean_ih_ptr, float *total_us_ih_ptr, |
777 |
< |
float *total_abs_ih_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
775 |
> |
int computeHelicity(float *jz_err, float *jz_rms_err, float *bz_err, float *bz, int *dims, float *jz, float *mean_ih_ptr, |
776 |
> |
float *mean_ih_err_ptr, float *total_us_ih_ptr, float *total_abs_ih_ptr, |
777 |
> |
float *total_us_ih_err_ptr, float *total_abs_ih_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
778 |
|
|
779 |
|
{ |
780 |
|
|
781 |
< |
int nx = dims[0], ny = dims[1]; |
782 |
< |
int i, j, count_mask=0; |
781 |
> |
int nx = dims[0]; |
782 |
> |
int ny = dims[1]; |
783 |
> |
int i = 0; |
784 |
> |
int j = 0; |
785 |
> |
int count_mask = 0; |
786 |
> |
double sum = 0.0; |
787 |
> |
double sum2 = 0.0; |
788 |
> |
double err = 0.0; |
789 |
|
|
790 |
|
if (nx <= 0 || ny <= 0) return 1; |
791 |
|
|
792 |
< |
*mean_ih_ptr = 0.0; |
651 |
< |
float sum=0.0, sum2=0.0; |
652 |
< |
|
653 |
< |
for (j = 0; j < ny; j++) |
792 |
> |
for (i = 0; i < nx; i++) |
793 |
|
{ |
794 |
< |
for (i = 0; i < nx; i++) |
794 |
> |
for (j = 0; j < ny; j++) |
795 |
|
{ |
796 |
< |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
797 |
< |
if isnan(jz[j * nx + i]) continue; |
798 |
< |
if isnan(bz[j * nx + i]) continue; |
799 |
< |
if (bz[j * nx + i] == 0.0) continue; |
800 |
< |
if (jz[j * nx + i] == 0.0) continue; |
801 |
< |
sum += (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); |
802 |
< |
sum2 += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); |
803 |
< |
count_mask++; |
796 |
> |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
797 |
> |
if isnan(jz[j * nx + i]) continue; |
798 |
> |
if isnan(bz[j * nx + i]) continue; |
799 |
> |
if isnan(jz_err[j * nx + i]) continue; |
800 |
> |
if isnan(bz_err[j * nx + i]) continue; |
801 |
> |
if (bz[j * nx + i] == 0.0) continue; |
802 |
> |
if (jz[j * nx + i] == 0.0) continue; |
803 |
> |
sum += (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to MEANJZH and ABSNJZH |
804 |
> |
sum2 += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to TOTUSJH |
805 |
> |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]*bz[j * nx + i]*bz[j * nx + i]) + (bz_err[j * nx + i]*bz_err[j * nx + i]*jz[j * nx + i]*jz[j * nx + i]); |
806 |
> |
count_mask++; |
807 |
|
} |
808 |
|
} |
809 |
|
|
810 |
< |
printf("sum/count_mask=%f\n",sum/count_mask); |
811 |
< |
printf("(1/cdelt1)*(rsun_obs/rsun_ref)=%f\n",(1/cdelt1)*(rsun_obs/rsun_ref)); |
812 |
< |
*mean_ih_ptr = sum/count_mask; /* Units are G^2 / m ; keyword is MEANJZH */ |
813 |
< |
*total_us_ih_ptr = sum2; /* Units are G^2 / m */ |
814 |
< |
*total_abs_ih_ptr= fabs(sum); /* Units are G^2 / m */ |
810 |
> |
*mean_ih_ptr = sum/count_mask ; /* Units are G^2 / m ; keyword is MEANJZH */ |
811 |
> |
*total_us_ih_ptr = sum2 ; /* Units are G^2 / m ; keyword is TOTUSJH */ |
812 |
> |
*total_abs_ih_ptr = fabs(sum) ; /* Units are G^2 / m ; keyword is ABSNJZH */ |
813 |
> |
|
814 |
> |
*mean_ih_err_ptr = (sqrt(err)/count_mask)*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity MEANJZH |
815 |
> |
*total_us_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity TOTUSJH |
816 |
> |
*total_abs_ih_err_ptr = (sqrt(err))*(1/cdelt1)*(rsun_obs/rsun_ref) ; // error in the quantity ABSNJZH |
817 |
> |
|
818 |
> |
//printf("MEANJZH=%f\n",*mean_ih_ptr); |
819 |
> |
//printf("MEANJZH_err=%f\n",*mean_ih_err_ptr); |
820 |
> |
|
821 |
> |
//printf("TOTUSJH=%f\n",*total_us_ih_ptr); |
822 |
> |
//printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr); |
823 |
> |
|
824 |
> |
//printf("ABSNJZH=%f\n",*total_abs_ih_ptr); |
825 |
> |
//printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr); |
826 |
|
|
827 |
|
return 0; |
828 |
|
} |
829 |
|
|
830 |
|
/*===========================================*/ |
831 |
< |
/* Example function 11: Sum of Absolute Value per polarity */ |
831 |
> |
/* Example function 12: Sum of Absolute Value per polarity */ |
832 |
|
|
833 |
|
// The Sum of the Absolute Value per polarity is defined as the following: |
834 |
|
// fabs(sum(jz gt 0)) + fabs(sum(jz lt 0)) and the units are in Amperes. |
835 |
|
// The units of jz are in G/pix. In this case, we would have the following: |
836 |
|
// Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF), |
837 |
|
// = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS) |
838 |
+ |
// |
839 |
+ |
// The error in this quantity is the same as the error in the mean vertical current (mean_jz_err). |
840 |
|
|
841 |
< |
int computeSumAbsPerPolarity(float *bz, float *jz, int *dims, float *totaljzptr, |
841 |
> |
int computeSumAbsPerPolarity(float *jz_err, float *bz_err, float *bz, float *jz, int *dims, float *totaljzptr, float *totaljz_err_ptr, |
842 |
|
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
843 |
|
|
844 |
|
{ |
845 |
< |
int nx = dims[0], ny = dims[1]; |
846 |
< |
int i, j, count_mask=0; |
845 |
> |
int nx = dims[0]; |
846 |
> |
int ny = dims[1]; |
847 |
> |
int i=0; |
848 |
> |
int j=0; |
849 |
> |
int count_mask=0; |
850 |
> |
double sum1=0.0; |
851 |
> |
double sum2=0.0; |
852 |
> |
double err=0.0; |
853 |
> |
*totaljzptr=0.0; |
854 |
|
|
855 |
|
if (nx <= 0 || ny <= 0) return 1; |
694 |
– |
|
695 |
– |
*totaljzptr=0.0; |
696 |
– |
float sum1=0.0, sum2=0.0; |
856 |
|
|
857 |
|
for (i = 0; i < nx; i++) |
858 |
|
{ |
859 |
|
for (j = 0; j < ny; j++) |
860 |
|
{ |
861 |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
862 |
+ |
if isnan(bz[j * nx + i]) continue; |
863 |
+ |
if isnan(jz[j * nx + i]) continue; |
864 |
|
if (bz[j * nx + i] > 0) sum1 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
865 |
|
if (bz[j * nx + i] <= 0) sum2 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
866 |
+ |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]); |
867 |
+ |
count_mask++; |
868 |
|
} |
869 |
|
} |
870 |
|
|
871 |
< |
*totaljzptr = fabs(sum1) + fabs(sum2); /* Units are A */ |
871 |
> |
*totaljzptr = fabs(sum1) + fabs(sum2); /* Units are A */ |
872 |
> |
*totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs)); |
873 |
> |
//printf("SAVNCPP=%g\n",*totaljzptr); |
874 |
> |
//printf("SAVNCPP_err=%g\n",*totaljz_err_ptr); |
875 |
> |
|
876 |
|
return 0; |
877 |
|
} |
878 |
|
|
879 |
|
/*===========================================*/ |
880 |
< |
/* Example function 12: Mean photospheric excess magnetic energy and total photospheric excess magnetic energy density */ |
880 |
> |
/* Example function 13: Mean photospheric excess magnetic energy and total photospheric excess magnetic energy density */ |
881 |
|
// The units for magnetic energy density in cgs are ergs per cubic centimeter. The formula B^2/8*PI integrated over all space, dV |
882 |
< |
// automatically yields erg per cubic centimeter for an input B in Gauss. |
882 |
> |
// automatically yields erg per cubic centimeter for an input B in Gauss. Note that the 8*PI can come out of the integral; thus, |
883 |
> |
// the integral is over B^2 dV and the 8*PI is divided at the end. |
884 |
|
// |
885 |
|
// Total magnetic energy is the magnetic energy density times dA, or the area, and the units are thus ergs/cm. To convert |
886 |
|
// ergs per centimeter cubed to ergs per centimeter, simply multiply by the area per pixel in cm: |
887 |
< |
// erg/cm^3(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.)^2 |
888 |
< |
// = erg/cm^3(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2 |
889 |
< |
// = erg/cm^3(1.30501e15) |
887 |
> |
// erg/cm^3*(CDELT1^2)*(RSUN_REF/RSUN_OBS ^2)*(100.^2) |
888 |
> |
// = erg/cm^3*(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2 |
889 |
> |
// = erg/cm^3*(1.30501e15) |
890 |
|
// = erg/cm(1/pix^2) |
891 |
|
|
892 |
< |
int computeFreeEnergy(float *bx, float *by, float *bpx, float *bpy, int *dims, |
893 |
< |
float *meanpotptr, float *totpotptr, int *mask, int *bitmask, |
892 |
> |
int computeFreeEnergy(float *bx_err, float *by_err, float *bx, float *by, float *bpx, float *bpy, int *dims, |
893 |
> |
float *meanpotptr, float *meanpot_err_ptr, float *totpotptr, float *totpot_err_ptr, int *mask, int *bitmask, |
894 |
|
float cdelt1, double rsun_ref, double rsun_obs) |
895 |
|
|
896 |
|
{ |
897 |
< |
int nx = dims[0], ny = dims[1]; |
898 |
< |
int i, j, count_mask=0; |
899 |
< |
|
897 |
> |
int nx = dims[0]; |
898 |
> |
int ny = dims[1]; |
899 |
> |
int i = 0; |
900 |
> |
int j = 0; |
901 |
> |
int count_mask = 0; |
902 |
> |
double sum = 0.0; |
903 |
> |
double sum1 = 0.0; |
904 |
> |
double err = 0.0; |
905 |
> |
*totpotptr = 0.0; |
906 |
> |
*meanpotptr = 0.0; |
907 |
> |
|
908 |
|
if (nx <= 0 || ny <= 0) return 1; |
733 |
– |
|
734 |
– |
*totpotptr=0.0; |
735 |
– |
*meanpotptr=0.0; |
736 |
– |
float sum=0.0; |
909 |
|
|
910 |
|
for (i = 0; i < nx; i++) |
911 |
|
{ |
912 |
|
for (j = 0; j < ny; j++) |
913 |
|
{ |
914 |
|
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
915 |
< |
sum += (( ((bx[j * nx + i])*(bx[j * nx + i]) + (by[j * nx + i])*(by[j * nx + i]) ) - ((bpx[j * nx + i])*(bpx[j * nx + i]) + (bpy[j * nx + i])*(bpy[j * nx + i])) )/8.*PI); |
915 |
> |
if isnan(bx[j * nx + i]) continue; |
916 |
> |
if isnan(by[j * nx + i]) continue; |
917 |
> |
sum += ( ((bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])) + ((by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])) )*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); |
918 |
> |
sum1 += ( ((bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])) + ((by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])) ); |
919 |
> |
err += 4.0*(bx[j * nx + i] - bpx[j * nx + i])*(bx[j * nx + i] - bpx[j * nx + i])*(bx_err[j * nx + i]*bx_err[j * nx + i]) + |
920 |
> |
4.0*(by[j * nx + i] - bpy[j * nx + i])*(by[j * nx + i] - bpy[j * nx + i])*(by_err[j * nx + i]*by_err[j * nx + i]); |
921 |
|
count_mask++; |
922 |
|
} |
923 |
|
} |
924 |
|
|
925 |
< |
*meanpotptr = (sum)/(count_mask); /* Units are ergs per cubic centimeter */ |
926 |
< |
*totpotptr = sum*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0)*(count_mask); /* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2, units of count_mask are pix^2; therefore, units of totpotptr are ergs per centimeter */ |
925 |
> |
/* Units of meanpotptr are ergs per centimeter */ |
926 |
> |
*meanpotptr = (sum1) / (count_mask*8.*PI) ; /* Units are ergs per cubic centimeter */ |
927 |
> |
*meanpot_err_ptr = (sqrt(err)) / (count_mask*8.*PI); // error in the quantity (sum)/(count_mask) |
928 |
> |
|
929 |
> |
/* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2; therefore, units of totpotptr are ergs per centimeter */ |
930 |
> |
*totpotptr = (sum)/(8.*PI); |
931 |
> |
*totpot_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0*(1/(8.*PI))); |
932 |
> |
|
933 |
> |
//printf("MEANPOT=%g\n",*meanpotptr); |
934 |
> |
//printf("MEANPOT_err=%g\n",*meanpot_err_ptr); |
935 |
> |
|
936 |
> |
//printf("TOTPOT=%g\n",*totpotptr); |
937 |
> |
//printf("TOTPOT_err=%g\n",*totpot_err_ptr); |
938 |
> |
|
939 |
|
return 0; |
940 |
|
} |
941 |
|
|
942 |
|
/*===========================================*/ |
943 |
< |
/* Example function 13: Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */ |
943 |
> |
/* Example function 14: Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */ |
944 |
> |
|
945 |
> |
int computeShearAngle(float *bx_err, float *by_err, float *bz_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, |
946 |
> |
float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask) |
947 |
> |
|
948 |
|
|
756 |
– |
int computeShearAngle(float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, |
757 |
– |
float *meanshear_angleptr, float *area_w_shear_gt_45ptr, |
758 |
– |
float *meanshear_anglehptr, float *area_w_shear_gt_45hptr, |
759 |
– |
int *mask, int *bitmask) |
949 |
|
{ |
950 |
< |
int nx = dims[0], ny = dims[1]; |
951 |
< |
int i, j; |
950 |
> |
int nx = dims[0]; |
951 |
> |
int ny = dims[1]; |
952 |
> |
int i = 0; |
953 |
> |
int j = 0; |
954 |
> |
float count_mask = 0; |
955 |
> |
float count = 0; |
956 |
> |
double dotproduct = 0.0; |
957 |
> |
double magnitude_potential = 0.0; |
958 |
> |
double magnitude_vector = 0.0; |
959 |
> |
double shear_angle = 0.0; |
960 |
> |
double denominator = 0.0; |
961 |
> |
double term1 = 0.0; |
962 |
> |
double term2 = 0.0; |
963 |
> |
double term3 = 0.0; |
964 |
> |
double sumsum = 0.0; |
965 |
> |
double err = 0.0; |
966 |
> |
double part1 = 0.0; |
967 |
> |
double part2 = 0.0; |
968 |
> |
double part3 = 0.0; |
969 |
> |
*area_w_shear_gt_45ptr = 0.0; |
970 |
> |
*meanshear_angleptr = 0.0; |
971 |
|
|
972 |
|
if (nx <= 0 || ny <= 0) return 1; |
765 |
– |
|
766 |
– |
*area_w_shear_gt_45ptr=0.0; |
767 |
– |
*meanshear_angleptr=0.0; |
768 |
– |
float dotproduct, magnitude_potential, magnitude_vector, shear_angle=0.0, sum = 0.0, count=0.0, count_mask=0.0; |
769 |
– |
float dotproducth, magnitude_potentialh, magnitude_vectorh, shear_angleh=0.0, sum1 = 0.0, counth = 0.0; |
973 |
|
|
974 |
|
for (i = 0; i < nx; i++) |
975 |
|
{ |
980 |
|
if isnan(bpy[j * nx + i]) continue; |
981 |
|
if isnan(bpz[j * nx + i]) continue; |
982 |
|
if isnan(bz[j * nx + i]) continue; |
983 |
< |
/* For mean 3D shear angle, area with shear greater than 45*/ |
983 |
> |
if isnan(bx[j * nx + i]) continue; |
984 |
> |
if isnan(by[j * nx + i]) continue; |
985 |
> |
if isnan(bx_err[j * nx + i]) continue; |
986 |
> |
if isnan(by_err[j * nx + i]) continue; |
987 |
> |
if isnan(bz_err[j * nx + i]) continue; |
988 |
> |
|
989 |
> |
/* For mean 3D shear angle, percentage with shear greater than 45*/ |
990 |
|
dotproduct = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]); |
991 |
< |
magnitude_potential = sqrt((bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i])); |
992 |
< |
magnitude_vector = sqrt( (bx[j * nx + i]*bx[j * nx + i]) + (by[j * nx + i]*by[j * nx + i]) + (bz[j * nx + i]*bz[j * nx + i]) ); |
993 |
< |
shear_angle = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI); |
991 |
> |
magnitude_potential = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i])); |
992 |
> |
magnitude_vector = sqrt( (bx[j * nx + i]*bx[j * nx + i]) + (by[j * nx + i]*by[j * nx + i]) + (bz[j * nx + i]*bz[j * nx + i]) ); |
993 |
> |
//printf("dotproduct=%f\n",dotproduct); |
994 |
> |
//printf("magnitude_potential=%f\n",magnitude_potential); |
995 |
> |
//printf("magnitude_vector=%f\n",magnitude_vector); |
996 |
> |
|
997 |
> |
shear_angle = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI); |
998 |
> |
sumsum += shear_angle; |
999 |
> |
//printf("shear_angle=%f\n",shear_angle); |
1000 |
|
count ++; |
1001 |
< |
sum += shear_angle ; |
1001 |
> |
|
1002 |
|
if (shear_angle > 45) count_mask ++; |
1003 |
< |
} |
1004 |
< |
} |
1005 |
< |
|
1003 |
> |
|
1004 |
> |
// For the error analysis |
1005 |
> |
|
1006 |
> |
term1 = bx[j * nx + i]*by[j * nx + i]*bpy[j * nx + i] - by[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bz[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bz[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i]; |
1007 |
> |
term2 = bx[j * nx + i]*bx[j * nx + i]*bpy[j * nx + i] - bx[j * nx + i]*by[j * nx + i]*bpx[j * nx + i] + bx[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i] - bz[j * nx + i]*by[j * nx + i]*bpz[j * nx + i]; |
1008 |
> |
term3 = bx[j * nx + i]*bx[j * nx + i]*bpz[j * nx + i] - bx[j * nx + i]*bz[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*by[j * nx + i]*bpz[j * nx + i] - by[j * nx + i]*bz[j * nx + i]*bpy[j * nx + i]; |
1009 |
> |
|
1010 |
> |
part1 = bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]; |
1011 |
> |
part2 = bpx[j * nx + i]*bpx[j * nx + i] + bpy[j * nx + i]*bpy[j * nx + i] + bpz[j * nx + i]*bpz[j * nx + i]; |
1012 |
> |
part3 = bx[j * nx + i]*bpx[j * nx + i] + by[j * nx + i]*bpy[j * nx + i] + bz[j * nx + i]*bpz[j * nx + i]; |
1013 |
> |
|
1014 |
> |
// denominator is squared |
1015 |
> |
denominator = part1*part1*part1*part2*(1.0-((part3*part3)/(part1*part2))); |
1016 |
> |
|
1017 |
> |
err = (term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) + |
1018 |
> |
(term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) + |
1019 |
> |
(term1*term1*bx_err[j * nx + i]*bx_err[j * nx + i])/(denominator) ; |
1020 |
> |
|
1021 |
> |
} |
1022 |
> |
} |
1023 |
|
/* For mean 3D shear angle, area with shear greater than 45*/ |
1024 |
< |
*meanshear_angleptr = (sum)/(count); /* Units are degrees */ |
1025 |
< |
printf("count_mask=%f\n",count_mask); |
1026 |
< |
printf("count=%f\n",count); |
1027 |
< |
*area_w_shear_gt_45ptr = (count_mask/(count))*(100.); /* The area here is a fractional area -- the % of the total area */ |
1024 |
> |
*meanshear_angleptr = (sumsum)/(count); /* Units are degrees */ |
1025 |
> |
*meanshear_angle_err_ptr = (sqrt(err)/count_mask)*(180./PI); |
1026 |
> |
|
1027 |
> |
/* The area here is a fractional area -- the % of the total area. This has no error associated with it. */ |
1028 |
> |
*area_w_shear_gt_45ptr = (count_mask/(count))*(100.0); |
1029 |
> |
|
1030 |
> |
printf("MEANSHR=%f\n",*meanshear_angleptr); |
1031 |
> |
printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr); |
1032 |
> |
printf("SHRGT45=%f\n",*area_w_shear_gt_45ptr); |
1033 |
|
|
1034 |
|
return 0; |
1035 |
|
} |
1150 |
|
|
1151 |
|
|
1152 |
|
/*===========END OF KEIJI'S CODE =========================*/ |
1153 |
+ |
|
1154 |
+ |
char *sw_functions_version() // Returns CVS version of sw_functions.c |
1155 |
+ |
{ |
1156 |
+ |
return strdup("$Id$"); |
1157 |
+ |
} |
1158 |
+ |
|
1159 |
|
/* ---------------- end of this file ----------------*/ |