1 |
|
/*=========================================== |
2 |
|
|
3 |
< |
The following 13 functions calculate the following spaceweather indices: |
3 |
> |
The following 14 functions calculate the following spaceweather indices: |
4 |
|
|
5 |
|
USFLUX Total unsigned flux in Maxwells |
6 |
|
MEANGAM Mean inclination angle, gamma, in degrees |
18 |
|
TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter |
19 |
|
MEANSHR Mean shear angle (measured using Btotal) in degrees |
20 |
|
|
21 |
< |
The indices are calculated on the pixels in which the disambig bitmap equals 5 or 7: |
22 |
< |
5: pixels for which the radial acute disambiguation solution was chosen |
23 |
< |
7: pixels for which the radial acute and NRWA disambiguation agree |
21 |
> |
The indices are calculated on the pixels in which the conf_disambig segment is greater than 70 and |
22 |
> |
pixels in which the bitmap segment is greater than 30. These ranges are selected because the CCD |
23 |
> |
coordinate bitmaps are interpolated. |
24 |
> |
|
25 |
> |
In the CCD coordinates, this means that we are selecting the pixels that equal 90 in conf_disambig |
26 |
> |
and the pixels that equal 33 or 44 in bitmap. Here are the definitions of the pixel values: |
27 |
> |
|
28 |
> |
For conf_disambig: |
29 |
> |
50 : not all solutions agree (weak field method applied) |
30 |
> |
60 : not all solutions agree (weak field + annealed) |
31 |
> |
90 : all solutions agree (strong field + annealed) |
32 |
> |
0 : not disambiguated |
33 |
> |
|
34 |
> |
For bitmap: |
35 |
> |
1 : weak field outside smooth bounding curve |
36 |
> |
2 : strong field outside smooth bounding curve |
37 |
> |
33 : weak field inside smooth bounding curve |
38 |
> |
34 : strong field inside smooth bounding curve |
39 |
|
|
40 |
|
Written by Monica Bobra 15 August 2012 |
41 |
|
Potential Field code (appended) written by Keiji Hayashi |
42 |
|
|
43 |
|
===========================================*/ |
44 |
|
#include <math.h> |
45 |
+ |
#include <mkl.h> |
46 |
|
|
47 |
< |
#define PI (M_PI) |
47 |
> |
#define PI (M_PI) |
48 |
|
#define MUNAUGHT (0.0000012566370614) /* magnetic constant */ |
49 |
|
|
50 |
|
/*===========================================*/ |
67 |
|
// 5: pixels for which the radial acute disambiguation solution was chosen |
68 |
|
// 7: pixels for which the radial acute and NRWA disambiguation agree |
69 |
|
|
70 |
< |
int computeAbsFlux(float *bz, int *dims, float *absFlux, |
71 |
< |
float *mean_vf_ptr, int *mask, |
72 |
< |
float cdelt1, double rsun_ref, double rsun_obs) |
70 |
> |
int computeAbsFlux(float *bz_err, float *bz, int *dims, float *absFlux, |
71 |
> |
float *mean_vf_ptr, float *mean_vf_err_ptr, float *count_mask_ptr, int *mask, |
72 |
> |
int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
73 |
|
|
74 |
|
{ |
75 |
|
|
76 |
|
int nx = dims[0], ny = dims[1]; |
77 |
|
int i, j, count_mask=0; |
78 |
< |
double sum=0.0; |
78 |
> |
double sum,err=0.0; |
79 |
|
|
80 |
|
if (nx <= 0 || ny <= 0) return 1; |
81 |
|
|
82 |
|
*absFlux = 0.0; |
83 |
|
*mean_vf_ptr =0.0; |
84 |
|
|
85 |
< |
for (j = 0; j < ny; j++) |
85 |
> |
for (i = 0; i < nx; i++) |
86 |
|
{ |
87 |
< |
for (i = 0; i < nx; i++) |
87 |
> |
for (j = 0; j < ny; j++) |
88 |
|
{ |
89 |
< |
if ( (mask[j * nx + i] != 7) && (mask[j * nx + i] != 5) ) continue; |
89 |
> |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
90 |
> |
if isnan(bz[j * nx + i]) continue; |
91 |
|
sum += (fabs(bz[j * nx + i])); |
92 |
< |
//sum += (fabs(bz[j * nx + i]))*inverseMu[j * nx + i]; // use this with mu function |
92 |
> |
err += bz_err[j * nx + i]*bz_err[j * nx + i]; |
93 |
|
count_mask++; |
94 |
|
} |
95 |
|
} |
96 |
|
|
97 |
< |
printf("nx=%d,ny=%d,count_mask=%d,sum=%f\n",nx,ny,count_mask,sum); |
98 |
< |
printf("cdelt1=%f,rsun_ref=%f,rsun_obs=%f\n",cdelt1,rsun_ref,rsun_obs); |
99 |
< |
*mean_vf_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
97 |
> |
*mean_vf_ptr = sum*cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0; |
98 |
> |
*mean_vf_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); // error in the unsigned flux |
99 |
> |
*count_mask_ptr = count_mask; |
100 |
> |
printf("CMASK=%g\n",*count_mask_ptr); |
101 |
> |
printf("USFLUX=%g\n",*mean_vf_ptr); |
102 |
> |
printf("sum=%f\n",sum); |
103 |
> |
printf("USFLUX_err=%g\n",*mean_vf_err_ptr); |
104 |
|
return 0; |
105 |
|
} |
106 |
|
|
107 |
|
/*===========================================*/ |
108 |
< |
/* Example function 2: Calculate Bh in units of Gauss */ |
108 |
> |
/* Example function 2: Calculate Bh, the horizontal field, in units of Gauss */ |
109 |
|
// Native units of Bh are Gauss |
110 |
|
|
111 |
< |
int computeBh(float *bx, float *by, float *bz, float *bh, int *dims, |
112 |
< |
float *mean_hf_ptr, int *mask) |
111 |
> |
int computeBh(float *bx_err, float *by_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, |
112 |
> |
float *mean_hf_ptr, int *mask, int *bitmask) |
113 |
|
|
114 |
|
{ |
115 |
|
|
116 |
|
int nx = dims[0], ny = dims[1]; |
117 |
|
int i, j, count_mask=0; |
118 |
|
float sum=0.0; |
119 |
< |
*mean_hf_ptr =0.0; |
119 |
> |
*mean_hf_ptr = 0.0; |
120 |
|
|
121 |
|
if (nx <= 0 || ny <= 0) return 1; |
122 |
|
|
123 |
< |
for (j = 0; j < ny; j++) |
123 |
> |
for (i = 0; i < nx; i++) |
124 |
|
{ |
125 |
< |
for (i = 0; i < nx; i++) |
125 |
> |
for (j = 0; j < ny; j++) |
126 |
|
{ |
127 |
+ |
if isnan(bx[j * nx + i]) continue; |
128 |
+ |
if isnan(by[j * nx + i]) continue; |
129 |
|
bh[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] ); |
130 |
|
sum += bh[j * nx + i]; |
131 |
+ |
bh_err[j * nx + i]=sqrt( bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i])/ bh[j * nx + i]; |
132 |
|
count_mask++; |
133 |
|
} |
134 |
|
} |
135 |
|
|
136 |
|
*mean_hf_ptr = sum/(count_mask); // would be divided by nx*ny if shape of count_mask = shape of magnetogram |
137 |
< |
printf("*mean_hf_ptr=%f\n",*mean_hf_ptr); |
137 |
> |
|
138 |
|
return 0; |
139 |
|
} |
140 |
|
|
141 |
|
/*===========================================*/ |
142 |
|
/* Example function 3: Calculate Gamma in units of degrees */ |
143 |
|
// Native units of atan(x) are in radians; to convert from radians to degrees, multiply by (180./PI) |
144 |
+ |
// Redo calculation in radians for error analysis (since derivatives are only true in units of radians). |
145 |
|
|
146 |
< |
|
147 |
< |
int computeGamma(float *bx, float *by, float *bz, float *bh, int *dims, |
123 |
< |
float *mean_gamma_ptr, int *mask) |
146 |
> |
int computeGamma(float *bz_err, float *bh_err, float *bx, float *by, float *bz, float *bh, int *dims, |
147 |
> |
float *mean_gamma_ptr, float *mean_gamma_err_ptr, int *mask, int *bitmask) |
148 |
|
{ |
149 |
|
int nx = dims[0], ny = dims[1]; |
150 |
|
int i, j, count_mask=0; |
152 |
|
if (nx <= 0 || ny <= 0) return 1; |
153 |
|
|
154 |
|
*mean_gamma_ptr=0.0; |
155 |
< |
float sum=0.0; |
156 |
< |
int count=0; |
155 |
> |
float sum,err,err_value=0.0; |
156 |
> |
|
157 |
|
|
158 |
|
for (i = 0; i < nx; i++) |
159 |
|
{ |
161 |
|
{ |
162 |
|
if (bh[j * nx + i] > 100) |
163 |
|
{ |
164 |
< |
//if (mask[j * nx + i] != 90 ) continue; |
165 |
< |
if ( (mask[j * nx + i] != 7) && (mask[j * nx + i] != 5) ) continue; |
166 |
< |
sum += (atan (fabs( bz[j * nx + i] / bh[j * nx + i] ))* (180./PI)); |
167 |
< |
count_mask++; |
164 |
> |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
165 |
> |
if isnan(bz[j * nx + i]) continue; |
166 |
> |
if isnan(bz_err[j * nx + i]) continue; |
167 |
> |
if isnan(bh_err[j * nx + i]) continue; |
168 |
> |
if (bz[j * nx + i] == 0) continue; |
169 |
> |
sum += (atan(fabs(bz[j * nx + i]/bh[j * nx + i] )))*(180./PI); |
170 |
> |
err += (( sqrt ( ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i])) + ((bh_err[j * nx + i]*bh_err[j * nx + i])/(bh[j * nx + i]*bh[j * nx + i]))) * fabs(bz[j * nx + i]/bh[j * nx + i]) ) / (1 + (bz[j * nx + i]/bh[j * nx + i])*(bz[j * nx + i]/bh[j * nx + i]))) *(180./PI); |
171 |
> |
count_mask++; |
172 |
|
} |
173 |
|
} |
174 |
|
} |
175 |
|
|
176 |
|
*mean_gamma_ptr = sum/count_mask; |
177 |
< |
printf("*mean_gamma_ptr=%f\n",*mean_gamma_ptr); |
177 |
> |
*mean_gamma_err_ptr = (sqrt(err*err))/(count_mask*100.); // error in the quantity (sum)/(count_mask) |
178 |
> |
printf("MEANGAM=%f\n",*mean_gamma_ptr); |
179 |
> |
printf("MEANGAM_err=%f\n",*mean_gamma_err_ptr); |
180 |
|
return 0; |
181 |
|
} |
182 |
|
|
184 |
|
/* Example function 4: Calculate B_Total*/ |
185 |
|
// Native units of B_Total are in gauss |
186 |
|
|
187 |
< |
int computeB_total(float *bx, float *by, float *bz, float *bt, int *dims, int *mask) |
187 |
> |
int computeB_total(float *bx_err, float *by_err, float *bz_err, float *bt_err, float *bx, float *by, float *bz, float *bt, int *dims, int *mask, int *bitmask) |
188 |
|
{ |
189 |
|
|
190 |
|
int nx = dims[0], ny = dims[1]; |
196 |
|
{ |
197 |
|
for (j = 0; j < ny; j++) |
198 |
|
{ |
199 |
+ |
if isnan(bx[j * nx + i]) continue; |
200 |
+ |
if isnan(by[j * nx + i]) continue; |
201 |
+ |
if isnan(bz[j * nx + i]) continue; |
202 |
|
bt[j * nx + i] = sqrt( bx[j * nx + i]*bx[j * nx + i] + by[j * nx + i]*by[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]); |
203 |
+ |
bt_err[j * nx + i]=sqrt(bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i] + by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i] + bz[j * nx + i]*bz[j * nx + i]*bz_err[j * nx + i]*bz_err[j * nx + i] )/bt[j * nx + i]; |
204 |
|
} |
205 |
|
} |
206 |
|
return 0; |
209 |
|
/*===========================================*/ |
210 |
|
/* Example function 5: Derivative of B_Total SQRT( (dBt/dx)^2 + (dBt/dy)^2 ) */ |
211 |
|
|
212 |
< |
int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, float *derx_bt, float *dery_bt) |
212 |
> |
int computeBtotalderivative(float *bt, int *dims, float *mean_derivative_btotal_ptr, int *mask, int *bitmask, float *derx_bt, float *dery_bt, float *bt_err, float *mean_derivative_btotal_err_ptr) |
213 |
|
{ |
214 |
|
|
215 |
|
int nx = dims[0], ny = dims[1]; |
218 |
|
if (nx <= 0 || ny <= 0) return 1; |
219 |
|
|
220 |
|
*mean_derivative_btotal_ptr = 0.0; |
221 |
< |
float sum = 0.0; |
221 |
> |
float sum, err = 0.0; |
222 |
|
|
223 |
|
|
224 |
|
/* brute force method of calculating the derivative (no consideration for edges) */ |
266 |
|
} |
267 |
|
|
268 |
|
|
235 |
– |
/* Just some print statements |
236 |
– |
for (i = 0; i < nx; i++) |
237 |
– |
{ |
238 |
– |
for (j = 0; j < ny; j++) |
239 |
– |
{ |
240 |
– |
printf("j=%d\n",j); |
241 |
– |
printf("i=%d\n",i); |
242 |
– |
printf("dery_bt[j*nx+i]=%f\n",dery_bt[j*nx+i]); |
243 |
– |
printf("derx_bt[j*nx+i]=%f\n",derx_bt[j*nx+i]); |
244 |
– |
printf("bt[j*nx+i]=%f\n",bt[j*nx+i]); |
245 |
– |
} |
246 |
– |
} |
247 |
– |
*/ |
248 |
– |
|
269 |
|
for (i = 0; i <= nx-1; i++) |
270 |
|
{ |
271 |
|
for (j = 0; j <= ny-1; j++) |
272 |
|
{ |
273 |
< |
// if ( (derx_bt[j * nx + i]-dery_bt[j * nx + i]) == 0) continue; |
274 |
< |
//if (mask[j * nx + i] != 90 ) continue; |
275 |
< |
if ( (mask[j * nx + i] != 7) && (mask[j * nx + i] != 5) ) continue; |
273 |
> |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
274 |
> |
if isnan(derx_bt[j * nx + i]) continue; |
275 |
> |
if isnan(dery_bt[j * nx + i]) continue; |
276 |
|
sum += sqrt( derx_bt[j * nx + i]*derx_bt[j * nx + i] + dery_bt[j * nx + i]*dery_bt[j * nx + i] ); /* Units of Gauss */ |
277 |
+ |
err += (2.0)*bt_err[j * nx + i]*bt_err[j * nx + i]; |
278 |
|
count_mask++; |
279 |
|
} |
280 |
|
} |
281 |
|
|
282 |
< |
*mean_derivative_btotal_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
283 |
< |
printf("*mean_derivative_btotal_ptr=%f\n",*mean_derivative_btotal_ptr); |
282 |
> |
*mean_derivative_btotal_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
283 |
> |
*mean_derivative_btotal_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
284 |
> |
printf("MEANGBT=%f\n",*mean_derivative_btotal_ptr); |
285 |
> |
printf("MEANGBT_err=%f\n",*mean_derivative_btotal_err_ptr); |
286 |
|
return 0; |
287 |
|
} |
288 |
|
|
290 |
|
/*===========================================*/ |
291 |
|
/* Example function 6: Derivative of Bh SQRT( (dBh/dx)^2 + (dBh/dy)^2 ) */ |
292 |
|
|
293 |
< |
int computeBhderivative(float *bh, int *dims, float *mean_derivative_bh_ptr, int *mask, float *derx_bh, float *dery_bh) |
293 |
> |
int computeBhderivative(float *bh, float *bh_err, int *dims, float *mean_derivative_bh_ptr, float *mean_derivative_bh_err_ptr, int *mask, int *bitmask, float *derx_bh, float *dery_bh) |
294 |
|
{ |
295 |
|
|
296 |
|
int nx = dims[0], ny = dims[1]; |
299 |
|
if (nx <= 0 || ny <= 0) return 1; |
300 |
|
|
301 |
|
*mean_derivative_bh_ptr = 0.0; |
302 |
< |
float sum = 0.0; |
302 |
> |
float sum,err = 0.0; |
303 |
|
|
304 |
|
/* brute force method of calculating the derivative (no consideration for edges) */ |
305 |
|
for (i = 1; i <= nx-2; i++) |
346 |
|
} |
347 |
|
|
348 |
|
|
326 |
– |
/*Just some print statements |
327 |
– |
for (i = 0; i < nx; i++) |
328 |
– |
{ |
329 |
– |
for (j = 0; j < ny; j++) |
330 |
– |
{ |
331 |
– |
printf("j=%d\n",j); |
332 |
– |
printf("i=%d\n",i); |
333 |
– |
printf("dery_bh[j*nx+i]=%f\n",dery_bh[j*nx+i]); |
334 |
– |
printf("derx_bh[j*nx+i]=%f\n",derx_bh[j*nx+i]); |
335 |
– |
printf("bh[j*nx+i]=%f\n",bh[j*nx+i]); |
336 |
– |
} |
337 |
– |
} |
338 |
– |
*/ |
339 |
– |
|
349 |
|
for (i = 0; i <= nx-1; i++) |
350 |
|
{ |
351 |
|
for (j = 0; j <= ny-1; j++) |
352 |
|
{ |
353 |
< |
// if ( (derx_bh[j * nx + i]-dery_bh[j * nx + i]) == 0) continue; |
354 |
< |
//if (mask[j * nx + i] != 90 ) continue; |
355 |
< |
if ( (mask[j * nx + i] != 7) && (mask[j * nx + i] != 5) ) continue; |
353 |
> |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
354 |
> |
if isnan(derx_bh[j * nx + i]) continue; |
355 |
> |
if isnan(dery_bh[j * nx + i]) continue; |
356 |
|
sum += sqrt( derx_bh[j * nx + i]*derx_bh[j * nx + i] + dery_bh[j * nx + i]*dery_bh[j * nx + i] ); /* Units of Gauss */ |
357 |
+ |
err += (2.0)*bh_err[j * nx + i]*bh_err[j * nx + i]; |
358 |
|
count_mask++; |
359 |
|
} |
360 |
|
} |
361 |
|
|
362 |
< |
*mean_derivative_bh_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
362 |
> |
*mean_derivative_bh_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
363 |
> |
*mean_derivative_bh_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
364 |
> |
printf("MEANGBH=%f\n",*mean_derivative_bh_ptr); |
365 |
> |
printf("MEANGBH_err=%f\n",*mean_derivative_bh_err_ptr); |
366 |
> |
|
367 |
|
return 0; |
368 |
|
} |
369 |
|
|
370 |
|
/*===========================================*/ |
371 |
|
/* Example function 7: Derivative of B_vertical SQRT( (dBz/dx)^2 + (dBz/dy)^2 ) */ |
372 |
|
|
373 |
< |
int computeBzderivative(float *bz, int *dims, float *mean_derivative_bz_ptr, int *mask, float *derx_bz, float *dery_bz) |
373 |
> |
int computeBzderivative(float *bz, float *bz_err, int *dims, float *mean_derivative_bz_ptr, float *mean_derivative_bz_err_ptr, int *mask, int *bitmask, float *derx_bz, float *dery_bz) |
374 |
|
{ |
375 |
|
|
376 |
|
int nx = dims[0], ny = dims[1]; |
379 |
|
if (nx <= 0 || ny <= 0) return 1; |
380 |
|
|
381 |
|
*mean_derivative_bz_ptr = 0.0; |
382 |
< |
float sum = 0.0; |
382 |
> |
float sum,err = 0.0; |
383 |
|
|
384 |
|
/* brute force method of calculating the derivative (no consideration for edges) */ |
385 |
|
for (i = 1; i <= nx-2; i++) |
386 |
|
{ |
387 |
|
for (j = 0; j <= ny-1; j++) |
388 |
|
{ |
389 |
+ |
if isnan(bz[j * nx + i]) continue; |
390 |
|
derx_bz[j * nx + i] = (bz[j * nx + i+1] - bz[j * nx + i-1])*0.5; |
391 |
|
} |
392 |
|
} |
396 |
|
{ |
397 |
|
for (j = 1; j <= ny-2; j++) |
398 |
|
{ |
399 |
+ |
if isnan(bz[j * nx + i]) continue; |
400 |
|
dery_bz[j * nx + i] = (bz[(j+1) * nx + i] - bz[(j-1) * nx + i])*0.5; |
401 |
|
} |
402 |
|
} |
406 |
|
i=0; |
407 |
|
for (j = 0; j <= ny-1; j++) |
408 |
|
{ |
409 |
+ |
if isnan(bz[j * nx + i]) continue; |
410 |
|
derx_bz[j * nx + i] = ( (-3*bz[j * nx + i]) + (4*bz[j * nx + (i+1)]) - (bz[j * nx + (i+2)]) )*0.5; |
411 |
|
} |
412 |
|
|
413 |
|
i=nx-1; |
414 |
|
for (j = 0; j <= ny-1; j++) |
415 |
|
{ |
416 |
+ |
if isnan(bz[j * nx + i]) continue; |
417 |
|
derx_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[j * nx + (i-1)]) - (-bz[j * nx + (i-2)]) )*0.5; |
418 |
|
} |
419 |
|
|
420 |
|
j=0; |
421 |
|
for (i = 0; i <= nx-1; i++) |
422 |
|
{ |
423 |
+ |
if isnan(bz[j * nx + i]) continue; |
424 |
|
dery_bz[j * nx + i] = ( (-3*bz[j*nx + i]) + (4*bz[(j+1) * nx + i]) - (bz[(j+2) * nx + i]) )*0.5; |
425 |
|
} |
426 |
|
|
427 |
|
j=ny-1; |
428 |
|
for (i = 0; i <= nx-1; i++) |
429 |
|
{ |
430 |
+ |
if isnan(bz[j * nx + i]) continue; |
431 |
|
dery_bz[j * nx + i] = ( (3*bz[j * nx + i]) + (-4*bz[(j-1) * nx + i]) - (-bz[(j-2) * nx + i]) )*0.5; |
432 |
|
} |
433 |
|
|
434 |
|
|
415 |
– |
/*Just some print statements |
416 |
– |
for (i = 0; i < nx; i++) |
417 |
– |
{ |
418 |
– |
for (j = 0; j < ny; j++) |
419 |
– |
{ |
420 |
– |
printf("j=%d\n",j); |
421 |
– |
printf("i=%d\n",i); |
422 |
– |
printf("dery_bz[j*nx+i]=%f\n",dery_bz[j*nx+i]); |
423 |
– |
printf("derx_bz[j*nx+i]=%f\n",derx_bz[j*nx+i]); |
424 |
– |
printf("bz[j*nx+i]=%f\n",bz[j*nx+i]); |
425 |
– |
} |
426 |
– |
} |
427 |
– |
*/ |
428 |
– |
|
435 |
|
for (i = 0; i <= nx-1; i++) |
436 |
|
{ |
437 |
|
for (j = 0; j <= ny-1; j++) |
438 |
|
{ |
439 |
|
// if ( (derx_bz[j * nx + i]-dery_bz[j * nx + i]) == 0) continue; |
440 |
< |
//if (mask[j * nx + i] != 90 ) continue; |
441 |
< |
if ( (mask[j * nx + i] != 7) && (mask[j * nx + i] != 5) ) continue; |
440 |
> |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
441 |
> |
if isnan(bz[j * nx + i]) continue; |
442 |
> |
//if isnan(bz_err[j * nx + i]) continue; |
443 |
> |
if isnan(derx_bz[j * nx + i]) continue; |
444 |
> |
if isnan(dery_bz[j * nx + i]) continue; |
445 |
|
sum += sqrt( derx_bz[j * nx + i]*derx_bz[j * nx + i] + dery_bz[j * nx + i]*dery_bz[j * nx + i] ); /* Units of Gauss */ |
446 |
+ |
err += 2.0*bz_err[j * nx + i]*bz_err[j * nx + i]; |
447 |
|
count_mask++; |
448 |
|
} |
449 |
|
} |
450 |
|
|
451 |
|
*mean_derivative_bz_ptr = (sum)/(count_mask); // would be divided by ((nx-2)*(ny-2)) if shape of count_mask = shape of magnetogram |
452 |
+ |
*mean_derivative_bz_err_ptr = (sqrt(err))/(count_mask); // error in the quantity (sum)/(count_mask) |
453 |
+ |
printf("MEANGBZ=%f\n",*mean_derivative_bz_ptr); |
454 |
+ |
printf("MEANGBZ_err=%f\n",*mean_derivative_bz_err_ptr); |
455 |
+ |
|
456 |
|
return 0; |
457 |
|
} |
458 |
|
|
459 |
|
/*===========================================*/ |
446 |
– |
|
460 |
|
/* Example function 8: Current Jz = (dBy/dx) - (dBx/dy) */ |
461 |
|
|
462 |
|
// In discretized space like data pixels, |
473 |
|
// |
474 |
|
// To change units from Gauss/pixel to mA/m^2 (the units for Jz in Leka and Barnes, 2003), |
475 |
|
// one must perform the following unit conversions: |
476 |
< |
// (Gauss/pix)(pix/arcsec)(arcsec/meter)(Newton/Gauss*Ampere*meter)(Ampere^2/Newton)(milliAmpere/Ampere), or |
477 |
< |
// (Gauss/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF)(1 T / 10^4 Gauss)(1 / 4*PI*10^-7)( 10^3 milliAmpere/Ampere), |
476 |
> |
// (Gauss)(1/arcsec)(arcsec/meter)(Newton/Gauss*Ampere*meter)(Ampere^2/Newton)(milliAmpere/Ampere), or |
477 |
> |
// (Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(1 T / 10^4 Gauss)(1 / 4*PI*10^-7)( 10^3 milliAmpere/Ampere), or |
478 |
> |
// (Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(1000.), |
479 |
|
// where a Tesla is represented as a Newton/Ampere*meter. |
480 |
+ |
// |
481 |
|
// As an order of magnitude estimate, we can assign 0.5 to CDELT1 and 722500m/arcsec to (RSUN_REF/RSUN_OBS). |
482 |
|
// In that case, we would have the following: |
483 |
|
// (Gauss/pix)(1/0.5)(1/722500)(10^-4)(4*PI*10^7)(10^3), or |
484 |
|
// jz * (35.0) |
485 |
|
// |
486 |
|
// The units of total unsigned vertical current (us_i) are simply in A. In this case, we would have the following: |
487 |
< |
// (Gauss/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(1000.) |
488 |
< |
// =(Gauss/pix)(1/CDELT1)(0.0010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(1000.) |
474 |
< |
// =(Gauss/pix)(1/0.5)(10^-4)(4*PI*10^7)(722500)(1000.) |
475 |
< |
// =(Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(1000.) |
476 |
< |
|
477 |
< |
int computeJz(float *bx, float *by, int *dims, float *jz, |
478 |
< |
float *mean_jz_ptr, float *us_i_ptr, int *mask, |
479 |
< |
float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) |
487 |
> |
// (Gauss/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF)(0.00010)(1/MUNAUGHT)(CDELT1)(CDELT1)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS) |
488 |
> |
// = (Gauss/pix)(0.00010)(1/MUNAUGHT)(CDELT1)(RSUN_REF/RSUN_OBS) |
489 |
|
|
490 |
|
|
491 |
+ |
// Comment out random number generator, which can only run on solar3 |
492 |
+ |
//int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, |
493 |
+ |
// int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery, float *noisebx, |
494 |
+ |
// float *noiseby, float *noisebz) |
495 |
|
|
496 |
< |
{ |
496 |
> |
int computeJz(float *bx_err, float *by_err, float *bx, float *by, int *dims, float *jz, float *jz_err, float *jz_err_squared, |
497 |
> |
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) |
498 |
|
|
485 |
– |
int nx = dims[0], ny = dims[1]; |
486 |
– |
int i, j, count_mask=0; |
499 |
|
|
500 |
< |
if (nx <= 0 || ny <= 0) return 1; |
500 |
> |
{ |
501 |
> |
int nx = dims[0], ny = dims[1]; |
502 |
> |
int i, j, count_mask=0; |
503 |
> |
|
504 |
> |
if (nx <= 0 || ny <= 0) return 1; |
505 |
> |
float curl=0.0, us_i=0.0,test_perimeter=0.0,mean_curl=0.0; |
506 |
|
|
490 |
– |
*mean_jz_ptr = 0.0; |
491 |
– |
float curl=0.0, us_i=0.0,test_perimeter=0.0,mean_curl=0.0; |
492 |
– |
|
507 |
|
|
508 |
+ |
/* Calculate the derivative*/ |
509 |
|
/* brute force method of calculating the derivative (no consideration for edges) */ |
510 |
+ |
|
511 |
+ |
|
512 |
|
for (i = 1; i <= nx-2; i++) |
513 |
|
{ |
514 |
|
for (j = 0; j <= ny-1; j++) |
515 |
|
{ |
516 |
+ |
if isnan(by[j * nx + i]) continue; |
517 |
|
derx[j * nx + i] = (by[j * nx + i+1] - by[j * nx + i-1])*0.5; |
518 |
|
} |
519 |
|
} |
520 |
|
|
503 |
– |
/* brute force method of calculating the derivative (no consideration for edges) */ |
521 |
|
for (i = 0; i <= nx-1; i++) |
522 |
|
{ |
523 |
|
for (j = 1; j <= ny-2; j++) |
524 |
|
{ |
525 |
+ |
if isnan(bx[j * nx + i]) continue; |
526 |
|
dery[j * nx + i] = (bx[(j+1) * nx + i] - bx[(j-1) * nx + i])*0.5; |
527 |
|
} |
528 |
|
} |
529 |
|
|
530 |
< |
|
513 |
< |
/* consider the edges */ |
530 |
> |
// consider the edges |
531 |
|
i=0; |
532 |
|
for (j = 0; j <= ny-1; j++) |
533 |
|
{ |
534 |
+ |
if isnan(by[j * nx + i]) continue; |
535 |
|
derx[j * nx + i] = ( (-3*by[j * nx + i]) + (4*by[j * nx + (i+1)]) - (by[j * nx + (i+2)]) )*0.5; |
536 |
|
} |
537 |
|
|
538 |
|
i=nx-1; |
539 |
|
for (j = 0; j <= ny-1; j++) |
540 |
|
{ |
541 |
+ |
if isnan(by[j * nx + i]) continue; |
542 |
|
derx[j * nx + i] = ( (3*by[j * nx + i]) + (-4*by[j * nx + (i-1)]) - (-by[j * nx + (i-2)]) )*0.5; |
543 |
< |
} |
543 |
> |
} |
544 |
|
|
545 |
|
j=0; |
546 |
|
for (i = 0; i <= nx-1; i++) |
547 |
|
{ |
548 |
+ |
if isnan(bx[j * nx + i]) continue; |
549 |
|
dery[j * nx + i] = ( (-3*bx[j*nx + i]) + (4*bx[(j+1) * nx + i]) - (bx[(j+2) * nx + i]) )*0.5; |
550 |
|
} |
551 |
|
|
552 |
|
j=ny-1; |
553 |
< |
for (i = 0; i <= nx-1; i++) |
553 |
> |
for (i = 0; i <= nx-1; i++) |
554 |
|
{ |
555 |
+ |
if isnan(bx[j * nx + i]) continue; |
556 |
|
dery[j * nx + i] = ( (3*bx[j * nx + i]) + (-4*bx[(j-1) * nx + i]) - (-bx[(j-2) * nx + i]) )*0.5; |
557 |
|
} |
558 |
|
|
538 |
– |
/* Just some print statements |
539 |
– |
for (i = 0; i < nx; i++) |
540 |
– |
{ |
541 |
– |
for (j = 0; j < ny; j++) |
542 |
– |
{ |
543 |
– |
printf("j=%d\n",j); |
544 |
– |
printf("i=%d\n",i); |
545 |
– |
printf("dery[j*nx+i]=%f\n",dery[j*nx+i]); |
546 |
– |
printf("derx[j*nx+i]=%f\n",derx[j*nx+i]); |
547 |
– |
printf("bx[j*nx+i]=%f\n",bx[j*nx+i]); |
548 |
– |
printf("by[j*nx+i]=%f\n",by[j*nx+i]); |
549 |
– |
} |
550 |
– |
} |
551 |
– |
*/ |
552 |
– |
|
559 |
|
|
560 |
|
for (i = 0; i <= nx-1; i++) |
561 |
|
{ |
562 |
|
for (j = 0; j <= ny-1; j++) |
563 |
|
{ |
564 |
< |
// if ( (derx[j * nx + i]-dery[j * nx + i]) == 0) continue; |
565 |
< |
if ( (mask[j * nx + i] != 7) && (mask[j * nx + i] != 5) ) continue; |
566 |
< |
//if (mask[j * nx + i] != 90 ) continue; |
567 |
< |
curl += (derx[j * nx + i]-dery[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */ |
568 |
< |
us_i += fabs(derx[j * nx + i]-dery[j * nx + i])*(1/cdelt1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT); /* us_i is in units of A / m^2 */ |
569 |
< |
jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); /* jz is in units of Gauss/pix */ |
564 |
> |
// calculate jz at all points |
565 |
> |
jz[j * nx + i] = (derx[j * nx + i]-dery[j * nx + i]); // jz is in units of Gauss/pix |
566 |
> |
jz_err[j * nx + i]=0.5*sqrt( (bx_err[(j+1) * nx + i]*bx_err[(j+1) * nx + i]) + (bx_err[(j-1) * nx + i]*bx_err[(j-1) * nx + i]) + |
567 |
> |
(by_err[j * nx + (i+1)]*by_err[j * nx + (i+1)]) + (by_err[j * nx + (i-1)]*by_err[j * nx + (i-1)]) ) ; |
568 |
> |
jz_err_squared[j * nx + i]=(jz_err[j * nx + i]*jz_err[j * nx + i]); |
569 |
> |
count_mask++; |
570 |
> |
} |
571 |
> |
} |
572 |
> |
|
573 |
> |
return 0; |
574 |
> |
} |
575 |
|
|
576 |
+ |
/*===========================================*/ |
577 |
+ |
|
578 |
+ |
|
579 |
+ |
/* Example function 9: Compute quantities on Jz array */ |
580 |
+ |
// Compute mean and total current on Jz array. |
581 |
+ |
|
582 |
+ |
int computeJzsmooth(float *bx, float *by, int *dims, float *jz, float *jz_smooth, float *jz_err, float *jz_rms_err, float *jz_err_squared_smooth, |
583 |
+ |
float *mean_jz_ptr, float *mean_jz_err_ptr, float *us_i_ptr, float *us_i_err_ptr, int *mask, int *bitmask, |
584 |
+ |
float cdelt1, double rsun_ref, double rsun_obs,float *derx, float *dery) |
585 |
+ |
|
586 |
+ |
{ |
587 |
+ |
|
588 |
+ |
int nx = dims[0], ny = dims[1]; |
589 |
+ |
int i, j, count_mask=0; |
590 |
+ |
|
591 |
+ |
if (nx <= 0 || ny <= 0) return 1; |
592 |
+ |
|
593 |
+ |
float curl,us_i,test_perimeter,mean_curl,err=0.0; |
594 |
+ |
|
595 |
+ |
|
596 |
+ |
/* At this point, use the smoothed Jz array with a Gaussian (FWHM of 4 pix and truncation width of 12 pixels) but keep the original array dimensions*/ |
597 |
+ |
for (i = 0; i <= nx-1; i++) |
598 |
+ |
{ |
599 |
+ |
for (j = 0; j <= ny-1; j++) |
600 |
+ |
{ |
601 |
+ |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
602 |
+ |
if isnan(derx[j * nx + i]) continue; |
603 |
+ |
if isnan(dery[j * nx + i]) continue; |
604 |
+ |
if isnan(jz[j * nx + i]) continue; |
605 |
+ |
curl += (jz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.); /* curl is in units of mA / m^2 */ |
606 |
+ |
us_i += fabs(jz[j * nx + i])*(cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT); /* us_i is in units of A */ |
607 |
+ |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]); |
608 |
|
count_mask++; |
609 |
< |
} |
609 |
> |
} |
610 |
|
} |
611 |
|
|
612 |
< |
mean_curl = (curl/count_mask); |
570 |
< |
printf("mean_curl=%f\n",mean_curl); |
571 |
< |
printf("cdelt1, what is it?=%f\n",cdelt1); |
612 |
> |
/* Calculate mean vertical current density (mean_curl) and total unsigned vertical current (us_i) using smoothed Jz array and continue conditions above */ |
613 |
|
*mean_jz_ptr = curl/(count_mask); /* mean_jz gets populated as MEANJZD */ |
614 |
< |
printf("count_mask=%d\n",count_mask); |
615 |
< |
*us_i_ptr = (us_i); /* us_i gets populated as MEANJZD */ |
614 |
> |
*mean_jz_err_ptr = (sqrt(err))*fabs(((rsun_obs/rsun_ref)*(0.00010)*(1/MUNAUGHT)*(1000.))/(count_mask)); // error in the quantity MEANJZD |
615 |
> |
|
616 |
> |
*us_i_ptr = (us_i); /* us_i gets populated as TOTUSJZ */ |
617 |
> |
*us_i_err_ptr = (sqrt(err))*fabs((cdelt1/1)*(rsun_ref/rsun_obs)*(0.00010)*(1/MUNAUGHT)); // error in the quantity TOTUSJZ |
618 |
> |
|
619 |
> |
printf("MEANJZD=%f\n",*mean_jz_ptr); |
620 |
> |
printf("MEANJZD_err=%f\n",*mean_jz_err_ptr); |
621 |
> |
|
622 |
> |
printf("TOTUSJZ=%g\n",*us_i_ptr); |
623 |
> |
printf("TOTUSJZ_err=%g\n",*us_i_err_ptr); |
624 |
> |
|
625 |
|
return 0; |
626 |
|
|
627 |
|
} |
628 |
|
|
579 |
– |
|
629 |
|
/*===========================================*/ |
581 |
– |
/* Example function 9: Twist Parameter, alpha */ |
630 |
|
|
631 |
< |
// The twist parameter, alpha, is defined as alpha = Jz/Bz and the units are in 1/Mm |
631 |
> |
/* Example function 10: Twist Parameter, alpha */ |
632 |
> |
|
633 |
> |
// The twist parameter, alpha, is defined as alpha = Jz/Bz. In this case, the calculation |
634 |
> |
// for alpha is calculated in the following way (different from Leka and Barnes' approach): |
635 |
> |
|
636 |
> |
// (sum of all positive Bz + abs(sum of all negative Bz)) = avg Bz |
637 |
> |
// (abs(sum of all Jz at positive Bz) + abs(sum of all Jz at negative Bz)) = avg Jz |
638 |
> |
// avg alpha = avg Jz / avg Bz |
639 |
> |
|
640 |
> |
// The sign is assigned as follows: |
641 |
> |
// If the sum of all Bz is greater than 0, then evaluate the sum of Jz at the positive Bz pixels. |
642 |
> |
// If this value is > 0, then alpha is > 0. |
643 |
> |
// If this value is < 0, then alpha is <0. |
644 |
> |
// |
645 |
> |
// If the sum of all Bz is less than 0, then evaluate the sum of Jz at the negative Bz pixels. |
646 |
> |
// If this value is > 0, then alpha is < 0. |
647 |
> |
// If this value is < 0, then alpha is > 0. |
648 |
> |
|
649 |
> |
// The units of alpha are in 1/Mm |
650 |
|
// The units of Jz are in Gauss/pix; the units of Bz are in Gauss. |
651 |
|
// |
652 |
|
// Therefore, the units of Jz/Bz = (Gauss/pix)(1/Gauss)(pix/arcsec)(arsec/meter)(meter/Mm), or |
653 |
|
// = (Gauss/pix)(1/Gauss)(1/CDELT1)(RSUN_OBS/RSUN_REF)(10^6) |
654 |
|
// = 1/Mm |
655 |
|
|
656 |
< |
int computeAlpha(float *bz, int *dims, float *jz, float *mean_alpha_ptr, int *mask, |
657 |
< |
float cdelt1, double rsun_ref, double rsun_obs) |
656 |
> |
int computeAlpha(float *jz_err, float *bz_err, float *bz, int *dims, float *jz, float *jz_smooth, float *mean_alpha_ptr, float *mean_alpha_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
657 |
> |
|
658 |
|
{ |
659 |
|
int nx = dims[0], ny = dims[1]; |
660 |
< |
int i, j, count_mask=0; |
660 |
> |
int i, j, count_mask, a,b,c,d=0; |
661 |
|
|
662 |
|
if (nx <= 0 || ny <= 0) return 1; |
663 |
|
|
664 |
< |
*mean_alpha_ptr = 0.0; |
599 |
< |
float aa, bb, cc, bznew, alpha2, sum=0.0; |
664 |
> |
float aa, bb, cc, bznew, alpha2, sum1, sum2, sum3, sum4, sum, sum5, sum6, sum_err=0.0; |
665 |
|
|
666 |
|
for (i = 1; i < nx-1; i++) |
667 |
|
{ |
668 |
|
for (j = 1; j < ny-1; j++) |
669 |
|
{ |
670 |
< |
//if (mask[j * nx + i] != 90 ) continue; |
671 |
< |
if ( (mask[j * nx + i] != 7) && (mask[j * nx + i] != 5) ) continue; |
670 |
> |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
671 |
> |
//if isnan(jz_smooth[j * nx + i]) continue; |
672 |
|
if isnan(jz[j * nx + i]) continue; |
673 |
|
if isnan(bz[j * nx + i]) continue; |
674 |
< |
if (bz[j * nx + i] == 0.0) continue; |
675 |
< |
sum += (jz[j * nx + i] / bz[j * nx + i])*((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)) ; /* the units for (jz/bz) are 1/Mm */ |
674 |
> |
//if (jz_smooth[j * nx + i] == 0) continue; |
675 |
> |
if (jz[j * nx + i] == 0.0) continue; |
676 |
> |
if (bz_err[j * nx + i] == 0.0) continue; |
677 |
> |
if (bz[j * nx + i] == 0.0) continue; |
678 |
> |
if (bz[j * nx + i] > 0) sum1 += ( bz[j * nx + i] ); a++; |
679 |
> |
if (bz[j * nx + i] <= 0) sum2 += ( bz[j * nx + i] ); b++; |
680 |
> |
//if (bz[j * nx + i] > 0) sum3 += ( jz_smooth[j * nx + i]); |
681 |
> |
//if (bz[j * nx + i] <= 0) sum4 += ( jz_smooth[j * nx + i]); |
682 |
> |
if (bz[j * nx + i] > 0) sum3 += ( jz[j * nx + i] ); c++; |
683 |
> |
if (bz[j * nx + i] <= 0) sum4 += ( jz[j * nx + i] ); d++; |
684 |
> |
sum5 += bz[j * nx + i]; |
685 |
> |
/* sum_err is a fractional uncertainty */ |
686 |
> |
sum_err += sqrt(((jz_err[j * nx + i]*jz_err[j * nx + i])/(jz[j * nx + i]*jz[j * nx + i])) + ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))) * fabs( ( (jz[j * nx + i]) / (bz[j * nx + i]) ) *(1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)); |
687 |
|
count_mask++; |
688 |
|
} |
689 |
|
} |
690 |
+ |
|
691 |
+ |
sum = (((fabs(sum3))+(fabs(sum4)))/((fabs(sum2))+sum1))*((1/cdelt1)*(rsun_obs/rsun_ref)*(1000000.)); /* the units for (jz/bz) are 1/Mm */ |
692 |
+ |
|
693 |
+ |
/* Determine the sign of alpha */ |
694 |
+ |
if ((sum5 > 0) && (sum3 > 0)) sum=sum; |
695 |
+ |
if ((sum5 > 0) && (sum3 <= 0)) sum=-sum; |
696 |
+ |
if ((sum5 < 0) && (sum4 <= 0)) sum=sum; |
697 |
+ |
if ((sum5 < 0) && (sum4 > 0)) sum=-sum; |
698 |
+ |
|
699 |
+ |
*mean_alpha_ptr = sum; /* Units are 1/Mm */ |
700 |
+ |
*mean_alpha_err_ptr = (sqrt(sum_err*sum_err)) / ((a+b+c+d)*100.); // error in the quantity (sum)/(count_mask); factor of 100 comes from converting percent |
701 |
+ |
|
702 |
+ |
printf("a=%d\n",a); |
703 |
+ |
printf("b=%d\n",b); |
704 |
+ |
printf("d=%d\n",d); |
705 |
+ |
printf("c=%d\n",c); |
706 |
+ |
|
707 |
+ |
printf("MEANALP=%f\n",*mean_alpha_ptr); |
708 |
+ |
printf("MEANALP_err=%f\n",*mean_alpha_err_ptr); |
709 |
|
|
615 |
– |
printf("cdelt1=%f,rsun_ref=%f,rsun_obs=%f\n",cdelt1,rsun_ref,rsun_obs); |
616 |
– |
printf("count_mask=%d\n",count_mask); |
617 |
– |
printf("sum=%f\n",sum); |
618 |
– |
*mean_alpha_ptr = sum/count_mask; /* Units are 1/Mm */ |
710 |
|
return 0; |
711 |
|
} |
712 |
|
|
713 |
|
/*===========================================*/ |
714 |
< |
/* Example function 10: Helicity (mean current helicty, mean unsigned current helicity, and mean absolute current helicity) */ |
714 |
> |
/* Example function 11: Helicity (mean current helicty, total unsigned current helicity, absolute value of net current helicity) */ |
715 |
|
|
716 |
|
// The current helicity is defined as Bz*Jz and the units are G^2 / m |
717 |
|
// The units of Jz are in G/pix; the units of Bz are in G. |
718 |
< |
// Therefore, the units of Bz*Jz = (Gauss)*(Gauss/pix) = (Gauss^2/pix)(pix/arcsec)(arcsec/m) |
718 |
> |
// Therefore, the units of Bz*Jz = (Gauss)*(Gauss/pix) = (Gauss^2/pix)(pix/arcsec)(arcsec/meter) |
719 |
|
// = (Gauss^2/pix)(1/CDELT1)(RSUN_OBS/RSUN_REF) |
720 |
< |
// = G^2 / m. |
630 |
< |
|
720 |
> |
// = G^2 / m. |
721 |
|
|
722 |
< |
int computeHelicity(float *bz, int *dims, float *jz, float *mean_ih_ptr, float *total_us_ih_ptr, |
723 |
< |
float *total_abs_ih_ptr, int *mask, float cdelt1, double rsun_ref, double rsun_obs) |
722 |
> |
int computeHelicity(float *jz_err, float *jz_rms_err, float *bz_err, float *bz, int *dims, float *jz, float *mean_ih_ptr, |
723 |
> |
float *mean_ih_err_ptr, float *total_us_ih_ptr, float *total_abs_ih_ptr, |
724 |
> |
float *total_us_ih_err_ptr, float *total_abs_ih_err_ptr, int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
725 |
|
|
726 |
|
{ |
727 |
|
|
730 |
|
|
731 |
|
if (nx <= 0 || ny <= 0) return 1; |
732 |
|
|
733 |
< |
*mean_ih_ptr = 0.0; |
643 |
< |
float sum=0.0, sum2=0.0; |
733 |
> |
float sum,sum2,sum_err=0.0; |
734 |
|
|
735 |
< |
for (j = 0; j < ny; j++) |
735 |
> |
for (i = 0; i < nx; i++) |
736 |
|
{ |
737 |
< |
for (i = 0; i < nx; i++) |
737 |
> |
for (j = 0; j < ny; j++) |
738 |
|
{ |
739 |
< |
//if (mask[j * nx + i] != 90 ) continue; |
740 |
< |
if ( (mask[j * nx + i] != 7) && (mask[j * nx + i] != 5) ) continue; |
741 |
< |
if isnan(jz[j * nx + i]) continue; |
742 |
< |
if isnan(bz[j * nx + i]) continue; |
743 |
< |
if (bz[j * nx + i] == 0.0) continue; |
744 |
< |
if (jz[j * nx + i] == 0.0) continue; |
745 |
< |
sum += (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); |
746 |
< |
sum2 += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); |
747 |
< |
count_mask++; |
739 |
> |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
740 |
> |
if isnan(jz[j * nx + i]) continue; |
741 |
> |
if isnan(bz[j * nx + i]) continue; |
742 |
> |
if (bz[j * nx + i] == 0.0) continue; |
743 |
> |
if (jz[j * nx + i] == 0.0) continue; |
744 |
> |
sum += (jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to MEANJZH and ABSNJZH |
745 |
> |
sum2 += fabs(jz[j * nx + i]*bz[j * nx + i])*(1/cdelt1)*(rsun_obs/rsun_ref); // contributes to TOTUSJH |
746 |
> |
sum_err += sqrt(((jz_err[j * nx + i]*jz_err[j * nx + i])/(jz[j * nx + i]*jz[j * nx + i])) + ((bz_err[j * nx + i]*bz_err[j * nx + i])/(bz[j * nx + i]*bz[j * nx + i]))) * fabs(jz[j * nx + i]*bz[j * nx + i]*(1/cdelt1)*(rsun_obs/rsun_ref)); |
747 |
> |
count_mask++; |
748 |
|
} |
749 |
|
} |
750 |
|
|
751 |
< |
printf("sum/count_mask=%f\n",sum/count_mask); |
752 |
< |
printf("(1/cdelt1)*(rsun_obs/rsun_ref)=%f\n",(1/cdelt1)*(rsun_obs/rsun_ref)); |
753 |
< |
*mean_ih_ptr = sum/count_mask; /* Units are G^2 / m ; keyword is MEANJZH */ |
754 |
< |
*total_us_ih_ptr = sum2; /* Units are G^2 / m */ |
755 |
< |
*total_abs_ih_ptr= fabs(sum); /* Units are G^2 / m */ |
751 |
> |
*mean_ih_ptr = sum/count_mask ; /* Units are G^2 / m ; keyword is MEANJZH */ |
752 |
> |
*total_us_ih_ptr = sum2 ; /* Units are G^2 / m ; keyword is TOTUSJH */ |
753 |
> |
*total_abs_ih_ptr = fabs(sum) ; /* Units are G^2 / m ; keyword is ABSNJZH */ |
754 |
> |
|
755 |
> |
*mean_ih_err_ptr = (sqrt(sum_err*sum_err)) / (count_mask*100.) ; // error in the quantity MEANJZH |
756 |
> |
*total_us_ih_err_ptr = (sqrt(sum_err*sum_err)) / (100.) ; // error in the quantity TOTUSJH |
757 |
> |
*total_abs_ih_err_ptr = (sqrt(sum_err*sum_err)) / (100.) ; // error in the quantity ABSNJZH |
758 |
> |
|
759 |
> |
printf("MEANJZH=%f\n",*mean_ih_ptr); |
760 |
> |
printf("MEANJZH_err=%f\n",*mean_ih_err_ptr); |
761 |
> |
|
762 |
> |
printf("TOTUSJH=%f\n",*total_us_ih_ptr); |
763 |
> |
printf("TOTUSJH_err=%f\n",*total_us_ih_err_ptr); |
764 |
> |
|
765 |
> |
printf("ABSNJZH=%f\n",*total_abs_ih_ptr); |
766 |
> |
printf("ABSNJZH_err=%f\n",*total_abs_ih_err_ptr); |
767 |
|
|
768 |
|
return 0; |
769 |
|
} |
770 |
|
|
771 |
|
/*===========================================*/ |
772 |
< |
/* Example function 11: Sum of Absolute Value per polarity */ |
772 |
> |
/* Example function 12: Sum of Absolute Value per polarity */ |
773 |
|
|
774 |
|
// The Sum of the Absolute Value per polarity is defined as the following: |
775 |
|
// fabs(sum(jz gt 0)) + fabs(sum(jz lt 0)) and the units are in Amperes. |
776 |
|
// The units of jz are in G/pix. In this case, we would have the following: |
777 |
|
// Jz = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS)(RSUN_REF/RSUN_OBS)(RSUN_OBS/RSUN_REF), |
778 |
|
// = (Gauss/pix)(1/CDELT1)(0.00010)(1/MUNAUGHT)(RSUN_REF/RSUN_OBS) |
779 |
+ |
// |
780 |
+ |
// The error in this quantity is the same as the error in the mean vertical current (mean_jz_err). |
781 |
|
|
782 |
< |
int computeSumAbsPerPolarity(float *bz, float *jz, int *dims, float *totaljzptr, |
783 |
< |
int *mask, float cdelt1, double rsun_ref, double rsun_obs) |
782 |
> |
int computeSumAbsPerPolarity(float *jz_err, float *bz_err, float *bz, float *jz, int *dims, float *totaljzptr, float *totaljz_err_ptr, |
783 |
> |
int *mask, int *bitmask, float cdelt1, double rsun_ref, double rsun_obs) |
784 |
|
|
785 |
|
{ |
786 |
|
int nx = dims[0], ny = dims[1]; |
789 |
|
if (nx <= 0 || ny <= 0) return 1; |
790 |
|
|
791 |
|
*totaljzptr=0.0; |
792 |
< |
float sum1=0.0, sum2=0.0; |
792 |
> |
float sum1,sum2,err=0.0; |
793 |
|
|
794 |
|
for (i = 0; i < nx; i++) |
795 |
|
{ |
796 |
|
for (j = 0; j < ny; j++) |
797 |
|
{ |
798 |
< |
//if (mask[j * nx + i] != 90 ) continue; |
799 |
< |
if ( (mask[j * nx + i] != 7) && (mask[j * nx + i] != 5) ) continue; |
798 |
> |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
799 |
> |
if isnan(bz[j * nx + i]) continue; |
800 |
|
if (bz[j * nx + i] > 0) sum1 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
801 |
|
if (bz[j * nx + i] <= 0) sum2 += ( jz[j * nx + i])*(1/cdelt1)*(0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs); |
802 |
+ |
err += (jz_err[j * nx + i]*jz_err[j * nx + i]); |
803 |
+ |
count_mask++; |
804 |
|
} |
805 |
|
} |
806 |
|
|
807 |
< |
*totaljzptr = fabs(sum1) + fabs(sum2); /* Units are A */ |
807 |
> |
*totaljzptr = fabs(sum1) + fabs(sum2); /* Units are A */ |
808 |
> |
*totaljz_err_ptr = sqrt(err)*(1/cdelt1)*fabs((0.00010)*(1/MUNAUGHT)*(rsun_ref/rsun_obs)); |
809 |
> |
printf("SAVNCPP=%g\n",*totaljzptr); |
810 |
> |
printf("SAVNCPP_err=%g\n",*totaljz_err_ptr); |
811 |
> |
|
812 |
|
return 0; |
813 |
|
} |
814 |
|
|
815 |
|
/*===========================================*/ |
816 |
< |
/* Example function 12: Mean photospheric excess magnetic energy and total photospheric excess magnetic energy density */ |
816 |
> |
/* Example function 13: Mean photospheric excess magnetic energy and total photospheric excess magnetic energy density */ |
817 |
|
// The units for magnetic energy density in cgs are ergs per cubic centimeter. The formula B^2/8*PI integrated over all space, dV |
818 |
< |
// automatically yields erg per cubic centimeter for an input B in Gauss. |
818 |
> |
// automatically yields erg per cubic centimeter for an input B in Gauss. Note that the 8*PI can come out of the integral; thus, |
819 |
> |
// the integral is over B^2 dV and the 8*PI is divided at the end. |
820 |
|
// |
821 |
|
// Total magnetic energy is the magnetic energy density times dA, or the area, and the units are thus ergs/cm. To convert |
822 |
|
// ergs per centimeter cubed to ergs per centimeter, simply multiply by the area per pixel in cm: |
823 |
< |
// erg/cm^3(CDELT1)^2(RSUN_REF/RSUN_OBS)^2(100.)^2 |
824 |
< |
// = erg/cm^3(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2 |
825 |
< |
// = erg/cm^3(1.30501e15) |
823 |
> |
// erg/cm^3*(CDELT1^2)*(RSUN_REF/RSUN_OBS ^2)*(100.^2) |
824 |
> |
// = erg/cm^3*(0.5 arcsec/pix)^2(722500m/arcsec)^2(100cm/m)^2 |
825 |
> |
// = erg/cm^3*(1.30501e15) |
826 |
|
// = erg/cm(1/pix^2) |
827 |
|
|
828 |
< |
int computeFreeEnergy(float *bx, float *by, float *bpx, float *bpy, int *dims, |
829 |
< |
float *meanpotptr, float *totpotptr, int *mask, |
828 |
> |
int computeFreeEnergy(float *bx_err, float *by_err, float *bx, float *by, float *bpx, float *bpy, int *dims, |
829 |
> |
float *meanpotptr, float *meanpot_err_ptr, float *totpotptr, float *totpot_err_ptr, int *mask, int *bitmask, |
830 |
|
float cdelt1, double rsun_ref, double rsun_obs) |
831 |
|
|
832 |
|
{ |
837 |
|
|
838 |
|
*totpotptr=0.0; |
839 |
|
*meanpotptr=0.0; |
840 |
< |
float sum=0.0; |
840 |
> |
float sum,sum1,err=0.0; |
841 |
|
|
842 |
|
for (i = 0; i < nx; i++) |
843 |
|
{ |
844 |
|
for (j = 0; j < ny; j++) |
845 |
|
{ |
846 |
< |
//if (mask[j * nx + i] != 90 ) continue; |
847 |
< |
if ( (mask[j * nx + i] != 7) && (mask[j * nx + i] != 5) ) continue; |
848 |
< |
sum += (( ((bx[j * nx + i])*(bx[j * nx + i]) + (by[j * nx + i])*(by[j * nx + i]) ) - ((bpx[j * nx + i])*(bpx[j * nx + i]) + (bpy[j * nx + i])*(bpy[j * nx + i])) )/8.*PI); |
846 |
> |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
847 |
> |
if isnan(bx[j * nx + i]) continue; |
848 |
> |
if isnan(by[j * nx + i]) continue; |
849 |
> |
sum += ( ((bpx[j * nx + i] - bx[j * nx + i])*(bpx[j * nx + i] - bx[j * nx + i])) + ((bpy[j * nx + i] - by[j * nx + i])*(bpy[j * nx + i] - by[j * nx + i])) )*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0); |
850 |
> |
sum1 += ( ((bpx[j * nx + i] - bx[j * nx + i])*(bpx[j * nx + i] - bx[j * nx + i])) + ((bpy[j * nx + i] - by[j * nx + i])*(bpy[j * nx + i] - by[j * nx + i])) ); |
851 |
> |
err += (4.0*bx[j * nx + i]*bx[j * nx + i]*bx_err[j * nx + i]*bx_err[j * nx + i]) + (4.0*by[j * nx + i]*by[j * nx + i]*by_err[j * nx + i]*by_err[j * nx + i]); |
852 |
|
count_mask++; |
853 |
|
} |
854 |
|
} |
855 |
|
|
856 |
< |
*meanpotptr = (sum)/(count_mask); /* Units are ergs per cubic centimeter */ |
857 |
< |
*totpotptr = sum*(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0)*(count_mask); /* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2, units of count_mask are pix^2; therefore, units of totpotptr are ergs per centimeter */ |
856 |
> |
*meanpotptr = (sum1/(8.*PI)) / (count_mask); /* Units are ergs per cubic centimeter */ |
857 |
> |
*meanpot_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0) / (count_mask*8.*PI); // error in the quantity (sum)/(count_mask) |
858 |
> |
|
859 |
> |
/* Units of sum are ergs/cm^3, units of factor are cm^2/pix^2; therefore, units of totpotptr are ergs per centimeter */ |
860 |
> |
*totpotptr = (sum)/(8.*PI); |
861 |
> |
*totpot_err_ptr = (sqrt(err))*fabs(cdelt1*cdelt1*(rsun_ref/rsun_obs)*(rsun_ref/rsun_obs)*100.0*100.0*(1/(8.*PI))); |
862 |
> |
|
863 |
> |
printf("MEANPOT=%g\n",*meanpotptr); |
864 |
> |
printf("MEANPOT_err=%g\n",*meanpot_err_ptr); |
865 |
> |
|
866 |
> |
printf("TOTPOT=%g\n",*totpotptr); |
867 |
> |
printf("TOTPOT_err=%g\n",*totpot_err_ptr); |
868 |
> |
|
869 |
|
return 0; |
870 |
|
} |
871 |
|
|
872 |
|
/*===========================================*/ |
873 |
< |
/* Example function 13: Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */ |
873 |
> |
/* Example function 14: Mean 3D shear angle, area with shear greater than 45, mean horizontal shear angle, area with horizontal shear angle greater than 45 */ |
874 |
|
|
875 |
< |
int computeShearAngle(float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, |
876 |
< |
float *meanshear_angleptr, float *area_w_shear_gt_45ptr, |
753 |
< |
float *meanshear_anglehptr, float *area_w_shear_gt_45hptr, |
754 |
< |
int *mask) |
875 |
> |
int computeShearAngle(float *bx_err, float *by_err, float *bh_err, float *bx, float *by, float *bz, float *bpx, float *bpy, float *bpz, int *dims, |
876 |
> |
float *meanshear_angleptr, float *meanshear_angle_err_ptr, float *area_w_shear_gt_45ptr, int *mask, int *bitmask) |
877 |
|
{ |
878 |
|
int nx = dims[0], ny = dims[1]; |
879 |
|
int i, j; |
880 |
|
|
881 |
|
if (nx <= 0 || ny <= 0) return 1; |
882 |
|
|
883 |
< |
*area_w_shear_gt_45ptr=0.0; |
884 |
< |
*meanshear_angleptr=0.0; |
885 |
< |
float dotproduct, magnitude_potential, magnitude_vector, shear_angle=0.0, sum = 0.0, count=0.0, count_mask=0.0; |
764 |
< |
float dotproducth, magnitude_potentialh, magnitude_vectorh, shear_angleh=0.0, sum1 = 0.0, counth = 0.0; |
883 |
> |
//*area_w_shear_gt_45ptr=0.0; |
884 |
> |
//*meanshear_angleptr=0.0; |
885 |
> |
float dotproduct, magnitude_potential, magnitude_vector, shear_angle,err=0.0, sum = 0.0, count=0.0, count_mask=0.0; |
886 |
|
|
887 |
|
for (i = 0; i < nx; i++) |
888 |
|
{ |
889 |
|
for (j = 0; j < ny; j++) |
890 |
|
{ |
891 |
< |
//if (mask[j * nx + i] != 90 ) continue; |
771 |
< |
if ( (mask[j * nx + i] != 7) && (mask[j * nx + i] != 5) ) continue; |
891 |
> |
if ( mask[j * nx + i] < 70 || bitmask[j * nx + i] < 30 ) continue; |
892 |
|
if isnan(bpx[j * nx + i]) continue; |
893 |
|
if isnan(bpy[j * nx + i]) continue; |
894 |
|
if isnan(bpz[j * nx + i]) continue; |
895 |
|
if isnan(bz[j * nx + i]) continue; |
896 |
+ |
if isnan(bx[j * nx + i]) continue; |
897 |
+ |
if isnan(by[j * nx + i]) continue; |
898 |
|
/* For mean 3D shear angle, area with shear greater than 45*/ |
899 |
|
dotproduct = (bpx[j * nx + i])*(bx[j * nx + i]) + (bpy[j * nx + i])*(by[j * nx + i]) + (bpz[j * nx + i])*(bz[j * nx + i]); |
900 |
< |
magnitude_potential = sqrt((bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i])); |
901 |
< |
magnitude_vector = sqrt( (bx[j * nx + i]*bx[j * nx + i]) + (by[j * nx + i]*by[j * nx + i]) + (bz[j * nx + i]*bz[j * nx + i]) ); |
900 |
> |
magnitude_potential = sqrt( (bpx[j * nx + i]*bpx[j * nx + i]) + (bpy[j * nx + i]*bpy[j * nx + i]) + (bpz[j * nx + i]*bpz[j * nx + i])); |
901 |
> |
magnitude_vector = sqrt( (bx[j * nx + i]*bx[j * nx + i]) + (by[j * nx + i]*by[j * nx + i]) + (bz[j * nx + i]*bz[j * nx + i]) ); |
902 |
|
shear_angle = acos(dotproduct/(magnitude_potential*magnitude_vector))*(180./PI); |
903 |
|
count ++; |
904 |
|
sum += shear_angle ; |
905 |
+ |
err += -(1./(1.- sqrt(bx_err[j * nx + i]*bx_err[j * nx + i]+by_err[j * nx + i]*by_err[j * nx + i]+bh_err[j * nx + i]*bh_err[j * nx + i]))); |
906 |
|
if (shear_angle > 45) count_mask ++; |
907 |
|
} |
908 |
|
} |
909 |
|
|
910 |
|
/* For mean 3D shear angle, area with shear greater than 45*/ |
911 |
< |
*meanshear_angleptr = (sum)/(count); /* Units are degrees */ |
912 |
< |
printf("count_mask=%f\n",count_mask); |
913 |
< |
printf("count=%f\n",count); |
914 |
< |
*area_w_shear_gt_45ptr = (count_mask/(count))*(100.); /* The area here is a fractional area -- the % of the total area */ |
911 |
> |
*meanshear_angleptr = (sum)/(count); /* Units are degrees */ |
912 |
> |
*meanshear_angle_err_ptr = (sqrt(err*err))/(count); // error in the quantity (sum)/(count_mask) |
913 |
> |
*area_w_shear_gt_45ptr = (count_mask/(count))*(100.);/* The area here is a fractional area -- the % of the total area */ |
914 |
> |
|
915 |
> |
printf("MEANSHR=%f\n",*meanshear_angleptr); |
916 |
> |
printf("MEANSHR_err=%f\n",*meanshear_angle_err_ptr); |
917 |
|
|
918 |
|
return 0; |
919 |
|
} |