1 |
c ======================================================= |
2 |
c SUBROUTINES AND FUNCTIONS |
3 |
c ======================================================= |
4 |
|
5 |
c ----------------------------- |
6 |
subroutine fwidth(npt,np,num,rad,avc,widthc,bverb) |
7 |
cc call fwidth(npt,np,num,rad,avc,idthc) |
8 |
implicit real*8(a,c-h,o-z) |
9 |
CC IMP. log. now 'b', not 'q' ('q' was already taken) |
10 |
implicit logical(b) |
11 |
parameter(nn=4000) |
12 |
parameter(nx0=100) |
13 |
dimension rad(npt), avc(npt), widthc(3) |
14 |
dimension dx(nn), sumker(nn), qq(3) |
15 |
dimension fb(10),y(nn) |
16 |
|
17 |
q1=0.25d0 |
18 |
q2=0.5d0 |
19 |
q3=0.75d0 |
20 |
|
21 |
|
22 |
do 100 j=1,np-1 |
23 |
dx(j)=rad(j)-rad(j+1) |
24 |
100 continue |
25 |
|
26 |
k=1 |
27 |
sum=0.d0 |
28 |
sumker(1)=0.d0 |
29 |
do 300 j=1,np-1 |
30 |
sker=0.5d0*(avc(j)+avc(j+1)) |
31 |
sum=sum+dx(j)*sker |
32 |
sumker(j+1)=sum |
33 |
cc write(72,*)rad(j), avc(j),sumker(j+1) |
34 |
300 continue |
35 |
200 continue |
36 |
|
37 |
j=1 |
38 |
anor=sumker(np) |
39 |
if(bverb)then |
40 |
print*, 'anor ', anor |
41 |
endif |
42 |
do 400 i=1,np |
43 |
sumker(i)=sumker(i)/anor |
44 |
cc write(82,*)rad(i), sumker(i) |
45 |
400 continue |
46 |
if(bverb) print*, sumker(i),sumker(np) |
47 |
410 continue |
48 |
|
49 |
ntab=np |
50 |
reps=1.d-5 |
51 |
|
52 |
j=1 |
53 |
do 1010 i=1,np |
54 |
y(i)=sumker(i) |
55 |
1010 continue |
56 |
nuse=4 |
57 |
call DIVDIF(q1,y,rad,NUSE,NTAB,FB,REPS,IER,DFB,DDFB) |
58 |
widthc(1)=fb(nuse) |
59 |
nuse=4 |
60 |
call DIVDIF(q2,y,rad,NUSE,NTAB,FB,REPS,IER,DFB,DDFB) |
61 |
widthc(2)=fb(nuse) |
62 |
nuse=4 |
63 |
call DIVDIF(q3,y,rad,NUSE,NTAB,FB,REPS,IER,DFB,DDFB) |
64 |
widthc(3)=fb(nuse) |
65 |
1000 continue |
66 |
if(bverb) print*,'wid ', widthc |
67 |
|
68 |
return |
69 |
end |
70 |
c ------------------------- |
71 |
c SUBROUTINE WHICH CALLS LAPACK ROUTINES |
72 |
c ===================================== |
73 |
|
74 |
subroutine solve(la,lb,norder,nrhs,a,b,ierr,ipiv,qverb) |
75 |
implicit real*8(a-h,o-p,r-z) |
76 |
implicit logical(q) |
77 |
character*1 trans, uplo |
78 |
|
79 |
dimension a(la,norder), b(lb,nrhs), ipiv(norder) |
80 |
dimension work (10000) |
81 |
|
82 |
lwork=10000 |
83 |
uplo='u' |
84 |
call dsytrf(uplo, norder, a ,la, ipiv, work, lwork, ier) |
85 |
if(ier.ne.0)then |
86 |
print*,'error in transformation', ier |
87 |
endif |
88 |
|
89 |
trans='N' |
90 |
uplo='u' |
91 |
call dsytrs(uplo,norder,nrhs,a,la,ipiv,b,lb,ierr) |
92 |
if(qverb) print*, 'solution ier', ierr |
93 |
return |
94 |
end |
95 |
|
96 |
|
97 |
FUNCTION NEARST(XB,X,NTAB) |
98 |
implicit real*8(a-h,o-z) |
99 |
DIMENSION X(NTAB) |
100 |
|
101 |
LOW=1 |
102 |
IGH=NTAB |
103 |
IF(.NOT.(XB.LT.X(LOW).EQV.XB.LT.X(IGH))) THEN |
104 |
|
105 |
|
106 |
1500 IF(IGH-LOW.GT.1) THEN |
107 |
MID=(LOW+IGH)/2 |
108 |
IF(XB.LT.X(MID).EQV.XB.LT.X(LOW)) THEN |
109 |
LOW=MID |
110 |
ELSE |
111 |
IGH=MID |
112 |
ENDIF |
113 |
GO TO 1500 |
114 |
ENDIF |
115 |
ENDIF |
116 |
|
117 |
IF(ABS(XB-X(LOW)).LT.ABS(XB-X(IGH))) THEN |
118 |
NEARST=LOW |
119 |
ELSE |
120 |
NEARST=IGH |
121 |
ENDIF |
122 |
END |
123 |
|
124 |
c -------------------------------------------------- |
125 |
|
126 |
SUBROUTINE DIVDIF(XB,X,F,NUSE,NTAB,FB,REPS,IER,DFB,DDFB) |
127 |
implicit real*8(a-h,o-z) |
128 |
PARAMETER(NMAX=10) |
129 |
DIMENSION X(NTAB),F(NTAB),FB(*),XN(NMAX),XD(NMAX) |
130 |
|
131 |
NEXT=NEARST(XB,X,NTAB) |
132 |
FB(1)=F(NEXT) |
133 |
XD(1)=F(NEXT) |
134 |
XN(1)=X(NEXT) |
135 |
IER=0 |
136 |
PX=1.0 |
137 |
|
138 |
DFB=0.0 |
139 |
DDFB=0.0 |
140 |
DPX=0.0 |
141 |
DDPX=0.0 |
142 |
|
143 |
IP=NEXT |
144 |
IN=NEXT |
145 |
|
146 |
NIT=MIN0(NMAX,NUSE,NTAB) |
147 |
IF(NUSE.GT.NMAX.OR.NUSE.GT.NTAB) IER=12 |
148 |
IF(NUSE.LT.1) THEN |
149 |
IER=11 |
150 |
NIT=MIN0(6,NTAB,NMAX) |
151 |
ENDIF |
152 |
NUSE=1 |
153 |
|
154 |
DO 5000 J=2,NIT |
155 |
|
156 |
IF(IN.LE.1) GO TO 2200 |
157 |
IF(IP.GE.NTAB) GO TO 2000 |
158 |
IF(ABS(XB-X(IP+1)).LT.ABS(XB-X(IN-1))) GO TO 2200 |
159 |
2000 IN=IN-1 |
160 |
NEXT=IN |
161 |
GO TO 2800 |
162 |
2200 IP=IP+1 |
163 |
NEXT=IP |
164 |
|
165 |
2800 XD(J)=F(NEXT) |
166 |
XN(J)=X(NEXT) |
167 |
DO 3000 K=J-1,1,-1 |
168 |
3000 XD(K)=(XD(K+1)-XD(K))/(XN(J)-XN(K)) |
169 |
|
170 |
DDPX=DDPX*(XB-XN(J-1))+2.*DPX |
171 |
DPX=DPX*(XB-XN(J-1))+PX |
172 |
DFB=DFB+DPX*XD(1) |
173 |
DDFB=DDFB+DDPX*XD(1) |
174 |
|
175 |
PX=PX*(XB-XN(J-1)) |
176 |
ERR=XD(1)*PX |
177 |
FB(J)=FB(J-1)+ERR |
178 |
NUSE=J |
179 |
|
180 |
IF(ABS(ERR).LT.REPS) RETURN |
181 |
5000 CONTINUE |
182 |
|
183 |
IER=24 |
184 |
END |
185 |
|
186 |
c ------------------------------------------- |
187 |
|
188 |
SUBROUTINE GAUELM(N,NUM,A,X,DET,INT,LJ,IER,IFLG) |
189 |
implicit real*8(a-h,o-z) |
190 |
DIMENSION A(LJ,N),INT(N),X(LJ,NUM) |
191 |
|
192 |
IF(N.LE.0.OR.N.GT.LJ) THEN |
193 |
IER=111 |
194 |
RETURN |
195 |
ENDIF |
196 |
|
197 |
IER=122 |
198 |
IF(IFLG.LE.1) THEN |
199 |
DET=1.0 |
200 |
DO 2600 K=1,N-1 |
201 |
R1=0.0 |
202 |
DO 2200 L=K,N |
203 |
IF(ABS(A(L,K)).GT.R1) THEN |
204 |
R1=ABS(A(L,K)) |
205 |
KM=L |
206 |
ENDIF |
207 |
2200 CONTINUE |
208 |
|
209 |
INT(K)=KM |
210 |
IF(KM.NE.K) THEN |
211 |
DO 2300 L=K,N |
212 |
T1=A(K,L) |
213 |
A(K,L)=A(KM,L) |
214 |
2300 A(KM,L)=T1 |
215 |
DET=-DET |
216 |
ENDIF |
217 |
|
218 |
DET=DET*A(K,K) |
219 |
IF(A(K,K).EQ.0.0) RETURN |
220 |
C IF(ABS(A(K,K)).LT.REPS) RETURN |
221 |
DO 2500 L=K+1,N |
222 |
A(L,K)=A(L,K)/A(K,K) |
223 |
DO 2500 L1=K+1,N |
224 |
2500 A(L,L1)=A(L,L1)-A(L,K)*A(K,L1) |
225 |
2600 CONTINUE |
226 |
DET=DET*A(N,N) |
227 |
INT(N)=N |
228 |
IF(A(N,N).EQ.0.0) RETURN |
229 |
C IF(ABS(A(N,N)).LT.REPS) RETURN |
230 |
|
231 |
IER=0 |
232 |
IF(IFLG.EQ.1) THEN |
233 |
IFLG=2 |
234 |
RETURN |
235 |
ENDIF |
236 |
IFLG=2 |
237 |
ENDIF |
238 |
|
239 |
IER=0 |
240 |
DO 5000 J=1,NUM |
241 |
DO 3000 K=1,N-1 |
242 |
IF(K.NE.INT(K)) THEN |
243 |
T1=X(K,J) |
244 |
X(K,J)=X(INT(K),J) |
245 |
X(INT(K),J)=T1 |
246 |
ENDIF |
247 |
DO 3000 L=K+1,N |
248 |
3000 X(L,J)=X(L,J)-A(L,K)*X(K,J) |
249 |
|
250 |
X(N,J)=X(N,J)/A(N,N) |
251 |
DO 3300 K=N-1,1,-1 |
252 |
DO 3200 L=N,K+1,-1 |
253 |
3200 X(K,J)=X(K,J)-X(L,J)*A(K,L) |
254 |
3300 X(K,J)=X(K,J)/A(K,K) |
255 |
5000 CONTINUE |
256 |
END |
257 |
|